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“In the full conception. all mpnifestations of all forms are
1ike beautiful flowers in a vast garden where many COlOTrsS
and many kinds blodm harmoniously togethar. Fach blossom
feels itself through the manifestation of another. The low
looks up to the tall. The tall looks down the low. The va-
rious colors are a delight to all. The manner of growth fi-
119 tha:.r interest and intensifies a desire for fulfiliment.
: » the beauty unfold that lies dormant within,
design gradually becomes mAN~

‘day or a century:
10: £ nce sweet to all others. Each
sd unto others ; and in

All in that great field Of

eivers, vessels through Wthh

- of the throne. while others serve apove the throné and all
around it. Fach blends with every other. expressing only Joy
pecause privileged to serve. (The Great Master in that

country)



Preface

A Phoenix which has been called a creature with eternal 1tives

is told. in old Egyptean tales, to firstly die upon a pited

perfumes . carvied by himself. in the end of every interval
of his |ife time of five hundred years and to revive just
from that ash. A Holy Phoenix shal! be seen to revive from

hot ashes of Einsteinean theory of relativity and to fly over
sky . This is very the principies of ultra relativity along
with that background spirit of <icosmic philosophy> .

This title will be found to contain general mathematics .
physics and engineerings in order to make our planet a para-
dise. The theory would be a legitimate sequential of Einst-
einean theory of special relativity and general . and. furth-
ermore . that of anti-matter of P.AM. Dirac’s, and contain
much an ultra dymamics upon hyper surfaces. lt: of course.
hlongs to frontiers in natural sciences. and also favours
classical mechanics (especially does a mechanics on gyroes
and vector analysis) .which will make you fee! a2 nostalgia
for better old days. & Quantum Gravitational Generator @
Inverse-G Engine and 4¢ Time Reversing Machine have been preée-
sented as three representative exper imentals of <inverse
atomic technology= in the latter part of this title, which
will pe nothing but a new reaim of exper imental physics.
Inverse Gravitation cou!d dramatically be verified with a
great work of John Roy Robert Sgarl’s . It might also be
useful as an educational model as 1ike eignt fundamentals

of Japanese manual lettering (SHCODOH)

On the other hand, it can. however, be a fear ful weapon,
The author emphatically hopes that it may peacefully be used
by his Noble Brothers and Sisters.
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(1—1) Lorentz inpnrvariant angular
momenium wave Efquatlion

§1 Total Angular Momentum Wave Equation

(1-—1) Lorentz invariant angular

momentun wave Equation

Angular momentum forms six vectlOor (Ref 11) in Mirkowskean

space—time such that

i
MP =x2 p? — p?— - P2 3,

t A
M =z pt—xt pP — = oy

2

_ L A
M =2t p? —x pt— 3'2 ,1 %
MY =t pt —xt pt 3:?,1 oy
Me =z pZ_.rz p-i _ 2,25 rt 2,

.
M =xt p & Pi_?’—z‘“?" r3,
where x= (x5 x} z, ' =ict)
and p= (p' pi p' p'=1ip,)

stand for Minkowskean coordinate of a mass and that Tour

vector (Ref 12), respectively, M¥* are skew symmetric such that
M =—M*

with respect to super scripts j and k. The latter terms mean

intrinsic angular momentum {(six spini (Ref 13). We ghall

further specify total angular momentlum deusity upon the pth

I .nd energy momentum tensor with 7%,

hyper surface with m
of, 0, M@ =4 T (@), (1—1)
because we easily verify the relations of

4am O T =0 0, m’*

=i (8,0, M +9,9 m*®)

_ 1 . . kg o w .,

=5 {5'jakm ﬁjﬁkm Yy = O,



(1—1) Lorents inriariant angular momentum
wave Eguation

which have been nothing mt CONSeavyation of energy

momentum tensor (Ref 16). We have made use of
nfkp=:—-n#”)(skew symmetric}) ,

The same number of super scripts and lower stands fo-

contraction (sum from I to 4), Secondly we shall take the

dual of (1 —1) (Ref 17) such that
g, "M@y =9, (1-2)
where the dusl means, for instance

JEm

ik €
&) =5 T

mn

7™ are Perfectly skew symmetric pseudo tensor of ‘the fourth
rank (ipsilen of Bddingtons). The right hand side of the

dual of (1-—1) identically vanishes such as

e T, = (T T

i} m

=-1(etmy  gikm o

-2 mn mn

0,

l

aince

T (T ) = T™ (T )

nm
while only the left hand gide remains, leading us to (1—2).
Confining our analysis only to p=0. namely +to the zeroth
hyper surface (ordinary physical space. Ref 14 and 15), end
putting the tensor to be

W == (m2’30 m:!]:lﬂ m120)

= (mi® mP w0

(T T¥ TP iT™ = (p, igq)
we finally find

Totﬁﬁ:4ﬁp+_%&_g%_s



(1—1) Lorentz inriariant angular
momen tum wave Equaticn

1 0Ox
RIS ot
div g=4ngqg, (1-3)

where X and ifl stand for total axial angular momentum
density {on the gzeroth hyper surface = ordinary physical
space) and total polar (Ref 18), respectively,

We mamely derive a pair of wave Egn.

_DH{:4ET0f P,

47 Op

OfA=—"—-537 +tdmgred q. (1—4)

which shows that behaviour of total anpular momentum
propagates at signal velocity., (1—4) are also spin wave

Equation in relativistie form (Ref 19),

(1—2) Spin Wave and Gravitation

One of the phvsical prospects of spin or total six an—
gular momentum has been interaction with electromagnetic
field, Axial spin has been quantum operator for magnetizat—
ion, while polar will be found o0 be that for electric pola-—
rizability as described later. On the other hand a particle
immersed in ether of spin field must enjoy Coriolis force
and centrifugal force in accordance with that vertex.

Tt has been essentially idemtical with gravitational force.
while polar svin of that confronting entity must enjoy some
gravitational interactions. Let a sheet of raper be present.

You will recognize it to be z Plane if you see it over,



{1—2) Spin Wave and Gravitation
while you will feel that it would be a line if you do it
laterally. Gravitational interactions of six spin and that
electromagnetic are noihing bvut two different prospects of
the single object. We shall suppose that

q=pc/1-4% (1-5)
in (1—4) for the medium of resting center of mass that

enjoys internal motion. Under static field of six spin

v grad R
45— 4me graed p (R) ’ (1-—6)

V154
where Q0 {ﬁ) stands for mass density. Comparing (1 —6) with
Equation of gravitation of Poiggon's of |
4p=47K 0. (1—17) _
we found polar angular momehtum density 9 and gravitational
tield G to be associated by the relation of

I N - (1 —8)

V1 —f* C

A glance at (1—8) leads us to the conclusion that gravita-
ticn has been caused by Internal translation of ambient
ether, because axial argular momentum has been generaTting
operator ~f infinjitesiml (spatial) rotation, while wClar
that of infinitesimal tianslation (Ref 29). From weightless
field in an artificial satellite, every bod¥ may think that
gravitation will be caused by a vortex. it has.however- heen
found to rather a little be different although that estima-

tion was not mach remote from the truth.

(1—3) Lorentz Transformation of
Gravitational Field

Internal four momentum and total six angular momentum have

been a cauge of gavitation and also that reliult., the lstter

having defined the former and the former the latler, each
— 20_



{1—3) Lorentz Transformation of
agravitational Field

other. The former obeys a Lorentz transformation of

I 1_!_2’ 4 7 ‘.
Pl = \}J/I—:%}; ’ pz :pz, p3 *'_‘“-ps,
/ 4_ 4ol

which implies that the latter must enjoy that transformation.
The second set of (1—3) and that third one we may take four—
potential of o= (@ @7 @) ¢'=1ie"
of six gspin of X and idby

K, —is) =fot @ = 0, gok—ak o (1—10>
a0 that the second set of (1 —3) and that third one may iden-—
tically be satisfied (Ref 30), where Rot denotes rotation
with respectto space—time (which has six components and. is,
therefore, an extension of rot).
Not only = (g, @5 ¢{ ")
but also d= ¢at 8% 8% oY

are four vectors. They obey Lorentz transformations of

1 Wl‘%ifggi 2

! I'3'« 3
@' = o=t =¢ . @ =¢,
vi1-—g v ¢
4 ! 1
et = ¢,_Tjﬁﬁ$. : (1—11)
v 1= g
and 6', _ al+3‘b/ad 6\" :a a; _ a
1 \/‘1—:}5? ! 2 z '’ 3 3
8 = 9, t£0, (1—12)

owing to which total =ix angular momentum enjoys a Lorentsz
’

transformation of K= Hﬂ
= W, +A4, o = KA
- - —_— b oy - P ——
V1 =7 V1=



(1—4) Spin Induction Law

H,o= .
o — 2 P,
2z o
Vv1—pgt
: A, + K,
1, = == (1—13)
1 -4

with reference to (1—10) . In recourse to the relation bet-
ween polar angular momentum and gravitation of (1—8) we
finally obtain a Lorentz transformation of gravitational

field of

' P K, — cﬂG
K, =K, . k, = 2 e
1 1 2z
v 1 - g7
! 3 3 !
H{: .! GIZG H
: Vi 7 :
G+—k——’g X G k4

(1—4) Spin Induction Law

Static vector field of axial anfular momentum and polar has

been irrotaticnal such that ot K= 10, (1—15)

in reccurse to(1—3). We may take potential of spin (axial

angular momentum) of K=grad ¢, (1 —16)

We further suppose that potential at & (x) is proportional

to the solid angle () governing closed curve C which contains

momentum filux, P(X) such as ¢ (x)=LP(x), (1—17)

We also use a famous expression of classical wmechanics
grad () = ret¢ «, (1—18)

5 (1 —20)

Spatial vector T = J::‘—CC‘, ;t‘zm 2, ;ta—irz) gtarts from s

ds

where a = gSC



{(1—"5%) The Crucial Test
point on the curve and terminated at Q (¥) . We finally
ootain @ rather familiar relation of

. Pds X T
K= ¢, N | (1-19)

with referece to the first set of (1 -—3) of

rol K= 47 P, (1~-20)
{(1—19) is nothing but spin induction law, in
which intermal womentum is thought to be a cause of spin. The
gne has been defined by auother in (1—3). FPds and ds denote
infinitesimal element of intemal momentum and element of

curve. respectively.

{1—5) The Crucial Test

New Fgn . of gravitation proposed must gatisfy the so-called
crucisz]l tests. We shall examine our theory of gravitation

to furmnish satisfactory explanation to the motion of perihe-—
lion of a planet as one of the crucial tests.

The moving planet obeerves a gravitational field of
—

i k5
G =7y (& ?‘—if{— A I (1 —213

in recounrse o (1—14), where y standg for ILorentz factor of

y = — .
J1-7°

with ﬁ ==

and ¥ for the velocity of a planet. Gravitation will be

found to act upeon the planet such that

k—,"
Ffmr((}jt——f--—-xm)- (1-22)



{1-5) The Crucial Test
in which m means rest mags of a planet. The Hgn. of motion

of a planet may be found to have the form

alr F
] — T )
d T jl—ﬁd
a G
dg — ) : (1—22)
c 1 —4
where . .
= (x! x? ¥y
b o _ar B dt
ar TRy

and cg=W stands for total energy of a planet. It is suppo—

sed to enjoy an axially symmetric gravitational field of

H
Cn= g
Gg):o. (1—24)

where R and ¢ dencte two dimensional polar co-ordinate
of X'= Ras g,

and X°= Rsn g,
We pamely derive

¢ =mer (14 —5—5 . (1—25)

c?R
owing to the latter Han - of (1—23). which is nothing but
Briilouin's result and that of Imcas’es (Ref 64 and 65).
Boundary conditions have been taken to be

rRiT™ o = mev. (1—26)

They stated that Fingteinean relation of

2
me
W=
1 — o
must be corrected with gravitational potential. We have to
i
replace Iorentz factor by r=17v (1+ éfR Yoo (1 —27)

The radial part of the EBglit., of motion in terms of the corr—

ected Torentz Ffactor reads



(1—5) The Crucial Test

2 - 2

d” R h 2

e S R P M

c d-T R [ 'B Csz
2 fi u H

=— (14 —3 + — ) (1 — 28)
¢ R (34 Rfl ot g
k{3
where we SUpposs that <1

and g1,
and | X1 is assumed to be small relatively to gravitational
field of a celestial bedy. The latter term of (1-22) has
thus been neglected. h stands for aerial velocity of

s de

R———="h. {(1—29
cdT )

which was l1led to in recourse To Gp = 0>
( See the ordinary problem of Kepler's). The Hgn. of (1—28)

can be solved by the familiar method of planetary motien.

and we find the angle ¥ covered by one cycle

' d
¥ = f - [ £z {1—30)
Avr—a ) . 1 — kzsmd(p
. 2 ﬁ“_gl__
with k"= o -

@, # and 7 being the roots of cublec Eqn. which appears iu
the right hand side of the integral such that
3 C'ﬁ ﬁz ﬂ’&
a+ 4+ =—"—— (11— ——5 ) .

’5 2‘&3 C-i hz

s
3% A”
The parameters @ and £ are determined by
1

C=TT v

and A=

1
and F=—G=o




(1—53 The Urucial Test

where & and ¢ mean major radius of the orbit and eccentri-
city, respectively (7 does not stand for Lorentz factor
this time)d.

Expanding (1—30) and neglecling infiniteaimal terms, Wwe

finally find
24 i a 2

{
e? (1~¢*) T’

= 27 +

in which 7 means the period expressed in seconds.
The latter term shows secular rotation of the elliptic orbit

in the same sense as the revolution {Fig A).

Fig. A

Tt is just identical with Wingtein's result., and will
furnish a satisfactory verification of our BEgn. of

gravitation.



(2=1) Angular Momentum Operator as
8ix Vector

§ 2 Relativistic Spherecal Harmonics

(2—1) Angular Momentum OUperator
as 51x Vector

Whe shall solve Klein—Gorden HEgn. of
(O—«H ¥ o0 =0. (2 —1)

with four dimensional polar co--ordinate of.
=% = 7smf smw@os,

XY = Y = Tsmﬂslngpsmgf.

-I“'i:Z:Tsmﬁoosgo.

' =u=Tcos b, (2—2)
where 0= 7 <o, 0= <z, t=¢s=r
and 0¥ <orn.

We shall further let D Alambertian of O anallytically cont—

inue into Huclidean space—time (unitary trick) such that

1 0 3 O K*
— A= e ( ) +
0= ' r’ Or i or r?
: e _ L 8 ., 0 o L*
wen A=l ae e g v
2
and Lzz—[ ! i(sm(p % ) + 1 6 J. (2=3)
sin @ 0@ ae 511'12?’ Ik

K? gtands for the openator of sduare of six angular moment-
um (¥, 1i9) of,
2pP— Bpi= 1k (220,— £°0,)
k=P —xp = F (£°0,— x'0)
\x1p2___ xzpl_: ;% (3:16’2— xzal}
dpl—a'plo g (200 — ®'0))
e =| x*p?— .xzp‘: i B (,x-‘E:Jz_ x234j
xip:i_'_ x'zp‘: Lk (.:1:"'53_ 1‘334)/
namely of .

K= % q=w®+ (i3)?,



{2—1) Angular Momentum {Uperator as
83ix Vector

L? being ordinary angular momentum operator, the eigen fun-—

ctions and the eigen values of which are furnished with

Y, (. $)=L(L+1) Y] (¢, ¥,

|m{+m
2 (g, ¥y=(-1 ° ﬁLH o n

2 L+ {mi
L
i=(=] _
sin' ™! d im| 1L .211[2 (—1)?
d (oosgo)im[ 9 i=0
JUL=—D1EL—25) 1 ¢ s
#? commutes with 4% by
(xS 2% =o0. (2—4D)

4 are also observable since so are XK (Ref 47).
We bave made use of commutation relations of four momentum
operator and corresponding cc-ordinate of space—time Of.
(p’. x"J=—1in §5 (p' x)=1(x%" x5 =0
(i, k=1~4).
3% ctands for Kronecker's delta (Ref 48). We aiso obtain
(K% #*) =(K>% 27} =0, (2—4¢c)
from ¢(3—4b). K is also oleservable. L means orbital quan-
tum number (Ref 2) and is a non-negative integer, which gatie—
fies a relation of .
L+ 1 n, (2 —5)
n bveirg principal quantum number. m denotes magnetic gqu-
aﬁtum rumber, which satisfies
im | < L
( integers) . 4, atands for four dimensional Laplacian.
The following differential Eqpn. of.
radially

. 2
2 , n—1
d— ‘l‘g ’i + (kz'-_ .J"_} J Rr: (I') = 0 !

A2 r ar
dr r (2—6)

4



(2—1) Angular Momentum Operator as
Six Vector

the first angular part :

; d¢* d '
((1—ZH——— — 34 SR AC AP
dz A 1 —Z°
— (nf—1) ) @:yr=0, (2—7)
with Z =cos ! .

(3—7) can be obtained vy differentiating Gegenbauer differ—
ential Egn. (Ref 3) of.

z
[ (1-Z% g L YN (Vi2)) Oy (st )=0,
dZ* d Z
by L times. We f£inally derive
. a L

We have L+ 1<=n,
s0 that(2 —8) may physically be meaningful.

(?—2) Relativistic Spherical Harmonics

In recourse to the relation among principal guantum numbers
and orbital the eigen value in (2 —6) is noshing but prin-
cipal of

n=L+1. L4+2, correemev .

The orthonormal asaociations are
JTE (s ) @3 (cos ) sin® Ga#
0

= (n4+L)! s .
= Il (neI=1) 1} g nn . (2—9)

where onn gtands for Kronecker's symbol (Ref 4), and
sin® 8§40 means the first angular segment of space—time

volume element of



(2—3) Eigen Values of Poalar
Angular Momentum

d7 =7r"sin® fen pdrdfded?.
Radially we derilve elementary goclutions whicn are regular at

=0 (also finite when r—oo ),

VK

R, (r) = J, (xr). (2—10)

n

Their normglization relations are furnished by
TR (ry )Y rdr=4(0), (2-11)
0

where r dr denotes radial segment of space—time volume

element of
d7 = 7> sin® sin pdrdOded¥,

and 6 (%) sgtands for Diracean delta function. and does

not for Kronecker’s one .

(2—3) Eigen Values of Polar
Angular Momentum
The eigen value 4 of polar anpgular momentum of 9° is determ-

ined by
ined by 95‘

a2 m (8, . V) = [sec’ cos” § —

)
ﬂ
—tan? LT H(68, o ¥y=4Ad(8, ¢ ¥),

(2—12)

Putting { to be
H(8.9.¥)=H0) Y, ¥).
we obtain semarated differential Hgn. of.

[secﬁaﬁtmsﬂ L(L+1)a® §— 1) (H(8)=0,

IR
L YT (o, W)=L(L+1) Y] (¢, ¥). (2-13)

along with
x-=7Tcos f sio @ cos¥, z=17cos 8 csg.
y:’rmsﬁ sin ¢ sin ¢, x'=u= rsin 8§ .



(2—3) Eigen Values of Polar
Angular Momentum

and with 0 =7 <o, 0= (

1A
=

0 =p=nm and 0=¥<<2mw.
The differential Egn. of.

-

e ¢ =0 (oos® 0-20) 44 (Lt 1) 1§ — 2
X @) =o0. (2—14)
determines that eigen value of 4. We namely obtain
[(1——f2)E%; —-:J.affif — LE{H::IZ) +A+L{L+1))
X(E)E) =0,
(¢t =sinf) (2—15)
which is nothing but associated Gegentauer differential Eqn
with A+ L (L+1)=n%-1
= N(N+2), (2—16)
and along with
H(f}:g&ﬂ[ﬁf@i_l(aﬁﬁ). (2-17)
where L+1=n, (2-18)

and C_ (snf) stands for Gegentauer polynoms ( Ref 3)
refferred to in (2 -8 ). Thus, amplitude of polar angular
momentum is determined by

IHIZ\/RZ—I—L(LH—I) A, (2—19)

In which n means principal quantum number in recourse to the
former analysis.

Orthonormal eigen functions in Minkowskean sypace-time are.

L . L d .
@ (0 = (i Ceh )" M) ()
Keos(V+1) (84 t; ). (2—20)
(Ref 24) where
Mizmz(Nz—i—l) ...... A (N2+L2)



(2—3) Eigen Values of Polar
Angnlar Momentum

Orthogonal associations are sxpressed by

7@y 8 @y o) ch A = 5 (N—IV)

( 0=/V<oo) (2—21)

in which 5(1?-4&) atandg for Diracean delta function. and
according to which principal guanium nunber can aralytically
e continued onto complex plane (Ref 25 ).

Tt is analogical to Regge poles of complex orbital quantum
nurbers (Ref 26). |



(3—1) Lorentz Invariant Hamiltonian

§ 3 Quantum Operator for Electric
Polarizability

(3—1) Lorentz Invariant Hamiltonian

Polar angular momentum contains Hamiltonian as tne eighth
variable. We have To develope relativistic Hamiltonian for—
milation of eight canonical variables 80 that we may descr—
ipe that behaviour. This Hamiltonian formalation has been
examimed by several researchers (Ref 31 32). recently by
. Eraten (Ref 33). The Eqn. of motion under relativistic

forpulation of a particle immersed in electromagnetic ether

d ( ar ) = o dr
dt a8

mae XxH+e k. (3—1)

can be derived by variating the action of

) I;::d j L,ds, (3—2)
under relativistic constraint of
dez __dxzs
whore F= (x! x% D,

and Iagrangian density 18 tfurnished vy -

ax
I, = —mec +2ma A (3—3)

v ds

m o= and A stand for rest mass, @ half of coupling

2ma
constant of electromagnetic interaction and (four ) vectOYr

potentiali of sxternal electromagnetic field., regpectively .

Adding indeterminate part of Iagrangian deneity oOf
d X 2
A (—— .
(3% )
to T, . and variating

I:j'[L{,--{—i(“g’%“)z] de (3—4)



(3—1) Lorentz Invariant Hamiltonian

outside the geodetic, the Egn. of motion of,

o dzr ar dxo
2l — =8 % H+ oFE —22-
e ®74s T e Tys
a*x’ ar
-’1 - :2 a 'El -_—
2 o’ ma — o (3—5)

is obtained, 4 means indeterminate constant of Lagranges .
We emphatically write dS outside the gcodetic . We agaln Coms
pnto the geodetic taking as

2 A = mc,
a0 that (3—5) mey coincide with (3—1) . Ve namely derive

cight canonieal variables of X and

_ A ] .
o = L - me—SE ¢ omaa’,
5 ( dXJ) ase
o _
ds (3—86)
in recourse to which Lorent invariant Hamiltonian of
H=(P—2maA)’ /2mc+mc, (3—7)
oan be obtained . Eight canonical relations are
ax _ 0OH
ds ap
aPpP 0H
— - — 1 3 -
ds O X ( 8 )
the eighth of which leads us to
an’ OH
— ) 39
ds ot ‘( )
o €D,

Ordinary Hamiltonian H s

ig related to that Hamiltonian by (3—9). We finally derive
an expression oOf

ag® _ ds_  _4H
ds at ds

—_— TH[}:CH.
especially iun a resting system of intermal motion ( Ref 34)>



{3—1) Lorentz Invarianl Hamiltonian
where 7 denotes Lorentz factor . This implies a Thysical

meaning of Lorentz gealar of H. Tnat conservation law of

gg = 0, (3—11)
corresponds with that of ordinary Hamiltonian of,
gfext}. (3—12)
Interaction part with exterral field takes the form of .
rH' =cH
=—a (X -H—9-E). (3—13)

where X and 14 stand for axial angular momentum and polar.

respectively. Conventicrnal magnetic moment 1 has been

furnished by oH"
47 =—— 3—14
EYe; ( )
0an't electric moment e dons oy
0n’ iad
4TiP=—g—" =4+ —"T". (3—15)
ol1ce) 4

and can't we call polar angular momentam gLantum opsra tor
for electric polarizability @ Magnetic field and slectric alre
axial vector field and polar in Minkowskean space—time.
Axial angular momentum XK and polar i% alsc correspond with

this and that, respesctively. We nanely obtaln an eXpression

of 0. W, ,» —W,. —1i4a°
—}K a 0; H{ 1 _1H,
am (i, PY=ga : ! 4 }
}KEI _H{l’ 0. “‘Lg3 /f
ig, . i4,. i49,. 07 (3—16)

where g Neans nuclsar g - rfactor,

(3—2) Lorentz Transformation of Magnetization
and Electrie Polarization

Lorentz transformation of axial angular momentum and polar



(3—3) lorentz Invariant Helsenbergean
Equatien

s boen determined by (1 —13). In recourse to(3—14) and
(3—15) wo derive that of magnetization and electric polar-

imatioil of .

=1 P =P,

o Lrbr po e — g,
c Ji_ & * = 15
ot AP o L L

3 3 - 1 3 - - L]
V1= vV1—8  (3—-17)
wnich Just corresponds with the result of W. G. V. Rogesr's

( Ref 35) and subssguently verifies (3—14) and (3—15).

(3—3) Lorentz Invariant Heisenbergean
Equation

In recourse to eight canonical relations Of {3—8) as mny

cancnical Egn. of .

dxX 1 (g, xJ.

s v

aP i

e Hs P 1 3‘_ 8
1s - [ ] ( 18 ]

can be obtained with reference to Poigsorlg bracksts .

Secondly we derive Lorentz invariant Heisenbergean Eqn. of.

af > (m. f3, (3—19)
ds =

where T stands for physical gquantity composed of sums ard
products of eight canonical varlables. This Epn . is a Lore
ntz invariant ( contravariant) generalization of usual Heis-

snbergean Equn. of motion of.

af i 0 .
e C PP (3-20)

If we mut £ to De
we again verify (3-—-11 ).



{4~1) (@yration of Four Dimensional Top

§ 4 SEIKE-Kramers Eguation

(4—1) Gyration of Four Dimensional Top

In the former sectlon we obtalned Lorentz invariant Egn.
of motion of Heigenbergs. If we apply this ¥agh . to sseveral
physical guantities. we will have some Hgn. which must natu

ra1ly be Lorentz invariant. Firstly we derive

dX
e =a (K xH-—4dxXE),
if =a (R XE4+ g xH)Y. { 4—3)

in recourse to ctmmuitation relations of 8ix angular moOmentull
of KXK =1HAK, dXa=I1hLhX.

(a,, a,)—1ind,. (A, KI=1h4d,. (4—2)
wher we take Lorentz scalay and that physical guantity to
respectively be interaction of six angular momentull with
external electromagnetic field oF

H:-—g——(ﬂc-H-ﬂ-E), (4—1)

and that eix angular momentum. Jj. k and m are taken To be
cyclic and (4—2) holds under commutation relations among
rolativistic cancnical variables of

(p'. a3 =iK8"™. (p, p°)

=(x!, ) =0, ¥ =—1, (4—14)
¢ 3’ are Kronecker's sympols). Canonical variables are su-

pposed to commute with electromagnetic field. If we tlake

49 =E =10,
in (5—=3), we easily Tind
d XK
= a kK X H. (4—5)
d T

which is nothing at ordinary gyro magnetic Sgn. (Ref 36).

but in which correction of motion to clock of The systen.

_54 -—



{(4—1) Gyration of FYour Dimensional Top
(4—3) is Lorentz invariant gyro elsctramagnetic Hgh.

(Rof 18). (4—3)is also rearranged in the form of

a |
ar (| XH+ P XE),

N daP
a7

in recouarse o (3—14)and (3—15), where | and P atand for

=a(l XE +PXH). (4—7)

magnetic moment and electric of the system. regpectively( Ref
37). We mry observe gyrational torque to electric mament
with sxternal electric field, which has Deen introduced by K.
OKANC ( Ref 38). This electric moment alsc contaling osclllat—
icn of anti-varticles., namely negative component of Zitterb-
swegungen. because eigen value of polar angular wwomentum { & —
Al operators ) corresponds with those of positive evergy and
negative. This is amalogical with the fact thal axial agular
momehitun specifies rotaticn and counter one on the zeroth
hyper surface (ordimary poysical space ).

(4—3) seems L0 clagglcally gtate gyratiovns of four dinensi-
onal top. (5—3) was firstly introduced by H. A. Kramers in
the former age, several insufficient points would, however.
be found in the succeeding analysis (Ref 38). They will natu
rally be corrsected 1if you fabricate inverse( anti-) atomic
motor presented later. This would, as it werse, be like eight
fundamentals to inverse (anti-) atomic technoliogy. which will

be experimental physics in twenty first century.

(4—2) Solutions to Circularly Polarizca
Electromagnetic Field

What is the bshaviour of four dimensional top if it is immn-

ersed in circularly polarized electromagnetic field of
H = ﬂ] s ()T, HlsinQT, H ),



(4—2) Soclutions te Circularly Polarized
Electromagnetic Field

E=(—-EsnQtr, B cosQt, 0) ? (4—8)
That of polar angular mcmentum 4 is described by
. (1 Acsga, Asina, —B /—Aoosw‘r
—sin &, o @, © |y} —AshwrT
\Bmsa. B sin &, A K B
cos{) T, sin(2 T, 0
—~sin )T, cos(} T, 0 =7, (4—9)
0. 1
where bourdarry conditions are assumed to be
Acosa, Asna, —BRB — A
20(0) .
7, :i\—sma, s Qs 0 0
“Bes @, Bsind, A B / . ( 4-—10)

We have gtarted from a particled state, with

ad=drctan Hi .
Y . 2 FA
B/d=aVH,+E s(aH +0),

and A*+ B’=1,

Ag stated i the former section, the gigon value of the last
component of polar angular momentum specifics pogitively ener-
gpied state or negatively (Ref 39). The system enjoys negatively
eriergied state und.er the condition of,

P{t)= 2}1,(0 f‘J 9, (7Y d (OT)
—afﬁ*H—F (CEHQ—F.Q)/(G <0, (4-11)

with wzra’-’(Hl+El)+(aHg+ﬂ)

For the material entities of Ferrcxplans or Barium Strontinm
Titanate a<0,

We finally obtain 0 <aH,+& (4—12)

We move to negative energy state starting from particled with
(4 12). We shall later state statistical regulation {(in the
gection of inverse atomic motor).

(4—3) Gyro Eloctromagnetic Bquation under Maxwellean
Braking Action (Ceased)

_.58_



(5—1) Hlectromagnetic Behaviour of
State Four Momentum

§ 5 Equation of Motion to State Four Momentum

{(5—1) Electromagnetic Behaviour of
State Four Momentum

If we observe state four momentum of (p. 1ig) as a physgice
quantity T with Lorentz invariant Heisenbsrgean Eqn. of(3—1¢

an Egn. of motion of

aP

T =a(PXH+qE),

dg

aT =aP- -k, (5—1) is obtained

under electromagnetic field. For singls charged particie

e ar e ad i
a: 7 P:Tﬂ s 2 = ¥
mc aT C dT s

( current )
(5—1) reduces to ordinary Eqn. of motioh with Lorentz

force of,

adp i e

= X H -+ £,
art C o
aw

— an-E, (C.G.8)(5—-2)

where W stands fOr energy of that particle. We nere point
out that it ig nothing tut ( ¢ times) momentum along the nor-
mal { ¥ axis) on the geroth hyper surface (ordinary physical
gpracse ). We shall later state that momentum along the normal
on the other hyper surface ig generalized energy. (5—1)will
be a generalization of Egn, of motion with an ordinary char-
ged particle into a neutral but with eslectromagnetic intera-

ction ( for instance. of a neutron Or atcoms in general ).
(Hh—2) Solutions under Gravitational
Deceleration

The above system ernjoys a sclution of.

— /) -



(5—2) Solntions under Gravitational Decceleration

. d b
P (r):—-mcm?[ exrp(—art )+ j sin T —cosdT ),

p(t) =—me [aesdr+dsindr —acexp(—art)],

. 2 ] _ 2
PIJ(T):—TF’IC’W [ 2d5h1df+"a—a— 0 .S’IZL(ZT_'J,
m :
§ (1) :"ﬁ (( e®+ 8% +d?®) char — b% amd 1 ),
(5—-3)

where we Observe the momentum from upon the system rotating
at the anguiar frequency of () around 2 axXis on the mero-

Tth hyper surface (ordinary physical space) such that

/pl" cos (2T, sin (T, 0\ P!

; pz = —~sin (31, cos 2T, 0 Pg

\p3 0, 6, 1 /.
q = Q.

and boundary conditions are taken to be

PO =p (=1 () =0.

G ()= —w'= —me (<0).
We have namely started from resting state of negative energy
The notations have been defined by

a=yg/c, b=all=al,
and a =aﬂo+ 0.
We have also applied electrommgnetic field of (4—8) and
gravitational field of.

G=(0, 0, -—g) . (5~4)
We can reallize an initial condition of negative energy with
the fequency condition of (4—12)., We find energy of exter-
nal gravitaticnal field to flow into thse system by .

dw 2 A& (T
dw _ "Tdr " Tdr
dit o di ¢ (1)

dart

me’(a( a®y b4 d®) shag yd b swac])
{Caz+ A4 d2Y chart — P2 s d T ]




(5—3) Behsviours of the Second Order and
Third Derivative of Time

. {a(a’y b%4 d?) thar +db*smdr sechar )
( a2+ b2 d2y — b2cesdT sechar

=N

Mmge (T—e0 ), (5—5),

after longer driving. Stress energy of gravitation ( Ref 40)
of W= _—q¢*enk,

(&= 5.4 X 10" ergs/cn® on the surface of the earth)

is consumed .

(5—3) Behaviours of the Second Order and
Third Derivative of Time
If we apply

_ _4p
i

to Lorentz invariant Heisenbergean Han. of (3—19). and make
use of relativistic commmtation relations of {(4—4), we

obtain electromagnetic hehaviour of sscond order of four

~ + T Pt ey s
mr‘m‘:“"":'LLu O.F‘ th 7= LEs

_4’Dp_ =a’ ((PXH)XH+g(EXH)+(P-E)YE)
d_r

.mi%_:azf(pr)-E+qE2], (5—6)
drt

the gecond get of wnich bsecomes

a’t ; 2
mc—~T—=a3£(P xH) -E+gE™].
ar
. . dt
replacing q with mc—-&?_ .

Thig implies hbehaviours of the third derivative of time.
where 7 ghould be thought to be invariant tims ( the fifth
variable) of HEnatsus (Ref 41). (mc? times ) velocity of time
with respect to the geocdetic is nothing but energy on the
Zeroth hyper surface (ordinary physical), but will direct-

1y be behaviours of time (See tTime reversing achihe ).



{6—1) Four Dimensional Keplef s Problem

§6 Several Relativistic Problems

(6—1) Four Dimensional Kepler's Problem

Relativistic Eqn. of motion of

atx
m-———7s— = f, (6—1
a 7° )
with x=(x' x° x x*)
:(X: y; Ay u),
1 2 3
and f=(r: £+ £ £ )

dzr a6 2 d ¢ 2 ., a P 2.2@
e e e e
)(SD'IEI;DJZ** kn‘: 1
d . 46 de 2 .
37 (r e )—1 (1 ir Y sin @ cos ] + 1
X | 31_ )Zsinﬁoosﬁs.inz(p],
d 2n? @ dﬁf’) 26n® 0 s ¥ 2 _
—~(1—T-(rsm aT — r¥sin” U sin @ cos @ ( T ) =0,
; P
dd‘r { T bln"@smgo gr Yy = . (6 —3)
kM
1T we put f.=— L
r

and make use of space-time polar co—ordinate (r. 8. ¢.

of (2—2). Space—time gravitational potential of

-~flf'—( r’=x"+ y'+ z°+ u®) has been introduced by Eanat
(Ref 41). (6—3) 1is nothing ™t fundamental Eqn.

of space-time Kepler’s problem and a generalization of



(6—2) Lorentz Transformation
in three dimengional gpace (Ref 42). The last set of Egn,

states conservation of axial angular momentunm.

(6—2) Lorentz Transformation of Impedance

A telegraphic Eqn. (Ref 43) reads

o2 a 82 .
Oé——i—ﬁ‘n[“ﬁ;“"é:—g"&;?)fzﬂ, (6 —4)

(4

ctot
wrere L, ¢, 2nd R are impedance par unit length of transn—
igsion line. { A) Maxwellean FEgn. 18 invariant in electromag-
netic medium in terms of electric permearbility and magnetic,
(B)Y Total angular momentum wave Hqn., of (1—1) and (1—2)
are invariant in terms of six spin., while it is natural that
3 telegraphic Egn. should be invariant under Iorentz transf-
ormation when we observe The medium to be composed of imped-

ance, The telegraphic Egn. may easily be fourd to have the

form ﬁ 52 52
/ . FS, i o !
tr ¢ & - o ) czat2+3"c’07 _”73'*‘81’) gx?
; i 1 o 6 g
—B[R—I—QT(L 0(; ) CS'Z_P __'5'72:‘_—_}'[:0’ { 6—5)

aince four derivative enjoys Lorentz transformation of (1 —12).
We must heve the relation of
2
NI
1+ 5% 0

A = R, (6 —86)
50 that (6—5) may coincide with (6—4). (6—6) is nothing but

Lorentz transformation of impedance. y stamds for Lorentz fa-
1

1—p°

ctor of =



(6 —3—1} Ultra Dynamics upon the First
Hyper Surface

(6—3) Super Singnal Lorentz
Transformation

(6—~3—1) Ultra Dynamics upon the First Hyper Surface.

Infinitesimal space element In three dimensicnal space ig
expressed with dx dy 4z .
and ig closed by six infinitesimal plane elements of (dydez.
that confronting surface), (dzdx that confronting)and
{(dxdy. that confronting). while Minkowskean infinitesinml
space—time element isg specified by

dx dy dzdu (u=x"'=ict),
and is cloged Yy eight infinitesgimal hyper surface elements
of {dydzdu that confronting hyper surface }. (dzdu X dx.
that comfronting),. (dudxdy. that confronting) and (dxdydz.

that confronting) as shown in Fig. 1:

We have calied a gection of Minkowskean gpace—time <hyper
gsurface> (Ref 14,15) in comparison with infinitesimal
space—time element although it is esgsentically a sclid.
The hyper surface composed with

AdP’=dx dy 42 »
is called the geroth hyper. to whith time axis is orthogonal.
This is Ordimary Physical Space. on which most of phygical
obgservationg are performed. Lorentz transformation on the
Zeroth hyper eurface (Ordinary Physical Space) was

furnished with

=(x—¥t) S1-§ .
= Z ,

:y' =z

!

by A
7

¥



(6—3—1} Ultra Dynamics upon the First
Hyper Sarface

/ I4 2
t=(t-——— x) /1= (6—7)

(4

with g = v
C

We have widely known that a mass can not exceed The signal

velocity on that hyper plane(Ordinary Fhysiccl Space ) where

that <proper time> (Ref 20) is determined by

dr=J'1-3% dt. (6~8)

Generally speaking. pnysical phencmena on the other hypsr
surface mist be pregent. TFor instance. wa can think of <the
firgt hyper surface>. onto which (dydzdu) x axis is orth-
ogonal, and where the role of X is replaced Ty that on the
zeroth ( Ordinary Paysical Space ), (Ref 14.15). 0n that plane
the history Of a person 1s obgerved along t© AXis walch Ccorr-
eaponds with x axis on the zercth hyper surface (Ordinary

> Physical Space) as ghown 1in Fig. 2.

Fig. 2
( See the courresponding leaf.)

Proper time of a wass may easily be found to have the form

! B dt .
i =/ 1-¢c¢ T - CL: . (6-—-9)
0 i _
:\/1_(?') . - s { 6—10)

if we replace dt by dx in (6—8). We have emphagized That
V is anything but inverse of veloclty Uy explicitely
4T

writing as ax
(6—3—2) Iorentz Transformation on the First Hyper Surface

( Super signal Lorentz Transformation)

Thus, ( 6—10) is physically meaningfal only to C <V,
i

and Lorentz factor becomes =
Vi ()¢
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{h—3—213 Lorentz Transformation on the First Hyper
Burface {(Super Signal Lorentz Transformation)

We namely derive Lorentz trangformmtion on that plane Dy
replacing the role of € by that of X, such that

a X /—02_ d ¢ cot a
¢ —(i——"f;_)/ 1— (=) —(f—ﬁ'x)/\/l—(—————)

4 dx
Z =z, y =y,
= (a - S AN (Y = (et S (T
(6—11)

which 18 phygically meaningful only when a mass 18 super si-—
onal, We also verify that X Y 245 et = x4 32
+ 7% —¢? = constant. We have smthatically remmrked the
same fact as in (6—9) by sxpressing V:*%-,
explicitely. =<The Tirst hyper surface™ ig nothing but the

plane on waich super signal phenomsena can be described.
The component ' of enargy momAntum tensor has been the qua-
ntity which Delongs tO thal plane.

( 6—3~3) Hyper Enercy
Fnergy is nothing tat (¢ times) momentum along time on the
reroth hyper surface ( Ordinary Physieal Space ), such that

dt 3 dt
W:mca = +meg” -
ds cv 1 — 8%t
2
me

which has, in other terms. bteen (c times) momentum along
normal onto that plane. We can therefore. define energy on
the first hyper surface of

W=cp = mec %{5 —me’/V1-( g Y, (6—12)

ag (c Times) momentum along that normal of X axis.
This can be developed by Ieurent expansion{Ref 22} as

=me® (1+—5(£) 4o ). (6—13)

inside light cone (Ref 21 ).

Direct application of definition of energy on the Zerota
hyper surface ( Ordinary Physical Space) tc the first can
not furnish a beautiful formulia.



(7—1) Potentials to0 Stress Tensor

§ 7 Multi—harmonic Equation
(7—1) Potentials to Stress Tensor

Equilibrium of intermal force in three dimensional isotropic
elastic medium reads (Ref 6)
o f =0, (7—1)
{ contracted over k)
where f'° strands for three dimensional stress tensor with
gik_ g
(jeand x =1 ~3).
They are associated with ordinary expression with

1 2 33
d:flj szzs U:f +

" ¥ z

ro=f7, =" =" (7—2)
¥ zX xv

We may take stress potential of ¢ ¢ and ¢ (Ref 7) such

(3, % and m=1, 2 amd 3, cyclic),

f”:ajak¢m(j¢k#m). (7-3)

so that (7—1) may identically be satisfied. or

B 62 903 82 992
dx— _( ayE + azg )1
z .1 2 .3
6, = — (45— + 04
¥ dz dx
B 62 (p:? az (PL
g, - _( aXZ + ayd Yo
62 1
T __.____(ID_’
e 0ydz
T _——‘“‘a—)_‘az i ’
= dz0dx
2 3
Tx)‘,:—%};—o (7—'4)



(7—~1) Potentials to Stresa Tensor
0On the other hand, streege potential is associated with disp
lacement potential by the relation of

FC =W+ I+ X(x™ ., (7—7)
in recourse to fundamental Eqn. of elasticity of

=600, e+ 0, e, (j#k) (7—6)
if we taks displacement potentisl W of

Y= (W, PE, Pt
with e=(0, ¥ a,¥* g U, (7-5)

2

e=C(e'y % ¥ ard 20=mE/(m+1)
mean displacement and modulus of ghearing elasticity.
respectively. m and E are Poisson's number and modiulus of
longitudinal elasticity. respectively, with

r=(x' x*x).
The fimetion X (x™) only depends upon x°. We shall suppose
that T
when r — +oo. Then. X(xh=o0.
We accordingly cobtain

20W = @ p"— o7,
name 1y 2@ dit= (pz -4—(,.03—(_,91 .

0@ Y= @34_?91__‘]02 .

264 =g +op'—¢°, (7—8)

(7—2) Tri—harmonic Stress Function

Patting (7—8) into fundamental Eqn. of elasticity of

X m
j - i 1 ] O-+O-
e'=0e'=— [0} — -

g i m

).

{not contracted over k)



(7—-2) Tri—-harmonie¢ Stress Punevion

we oblalin a secular Eqn. of _
Oy +d/m — (0540%), — (3405 @1\
— (03t 03), 8+ d/m. — (34 07 <:j@2 ) =0
= (T —( 924+ ), B4 dm e
We namely derive

—— 2 .
(Iﬂ‘l‘l)(;*]. m) da @J:O} (7_10)

m
(ji=1, 2 and 3).

which leads us to

3 & ot
( Tt =) ¢’ =0, (7—11)
Ox oy 0z
exXcept in the case where m=1.

(7—11) can be rearranged in the form of .

66 aﬁ 06 66 aﬁ
( T T gt 3 3 PR S
0x oy d o 0x’ 0w Ax“0xg
R R
ox’ oy’ ox*0y° 0g® ox* ozt
~ g 216
o 17, ,
+ 3— + 33— p'=0. (7—12)
3y 22 ay°6z° "

wiich is nothing but three dimensional extensiom of Alry's
bi-harmonics ( partial differential Hon., of the fourth order )
(Ref 8) and can, therefore. be callied Tri-harmonic Bqr,
(that of the sixth order ). Thers are Six umkngwns of £ and
as many Egn. of { 7—1}) and ( 7—11). Stress components can
aniquely he determnined by chosing three independent suluti-
ons of (7—11). Plane larmonics has the single potential.
Three canponents of potential are. however, nagcessary in the
theory of three dimensioral elasticity, according to which

partial differential Egn. of the sixth order appears.



(7—3) Elasticity of Electromagnetie Etiher
(7—3) Elasticity of Electromagnetic Ether

Malti-namonics of thée sixth order 1s found to appear in the
former sgcction Lo 81X components of stress and shearing
alress. Therse are, however. 2ixteen components of tensor of
internal JTorces in Vinkowskean epace-time. Irn this case.
fundamental xgn. algo enjoye higher order since components
of stress potential increase. Preceding the examination of
that mgn. we mist reveal elasticity along(axis of) time.
Iet two megnetic cnarges with opposite gign and bound with
nagnetic lines of force be lresent in electromagnetic space
governed by Maxwellean lon. Trat lines of force would shrink
1ongitjdina11y and elongate laterally. Let Two electric
charges with the identical sign and bound with eleciric
lineg of force further be vresent. They are repelied each
other, and that linss of force would elongate longltudinally
and snrink lateraiyy. This 13 the 80-Callea elasticity of
backeground ether of electromagnetic field. There, however.
arisges a very mzzling question
@) : Waat is the difference between elasticity with respect
to magnetic fisld and trhat to eleCtric ? Three dimensional
clasticity will he sufficient with the former only. The
angwar would be Turniagnsa by
(4 : Magnetic elagticity nas been only spatial, electric
glasticity, however, inplies that of ether along tims.
because magnatic fleids zre gpatial canponents of electre-
maghetic tensor, wnille electric those concerned with time.
Wo may. therefore, introduce modilus of longitudinal elas-
ticity per unit wvolume oOr thPT seerface by

. 1 1 1 i + f Lq
dje”::eazvg (f“-—- )
2 I
(notT contrazted ovsr J) . (7—13)

. .

where £’ gtands for k-th component of stresg upon < the

J-th hyper surface >. e’ are straing in ¥’ sense. The latter
. . kk mam

terms mean lateral contribution of £, f™ and f°

1 X 4
(e, e?, e°, e*)
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(7T—4) Lxplicit Representation of Components
of Evergy Tensar

We firgt start from Airy’s bi-harmonic Egn. of

0° 0%
(__”_ _|_ 7 ) (X 3 y) & U 1 {,AJ
0 x%* oy’ 4
wnich 18 secondly extended into tri~harmonic Fgn. of,
2
0° a2 34
(———t+——+—=3" ¢ (Xx. v, ) =0. (B!
ox*  8y: 08z° 7
(B has further besn generalized into tetra-harmonic of.
82 az 62 1 82

ot =0, C

SR s - =
ox®  dy®  8z® cf 01’
1iCh are interesting proccesses.

(7 —4) Explicit Representation of
Components of Energy Tensor

A particular soiution to (7—25) in static Maxwellean fieil

of stress 1s given by gﬁjt (X, vy, 3) =AR°, (7—27)
with RP=x’+y"+z", by solving
1 a 2 (9 4 ik
— = R R —— ¥ ' — ' -
[Rz BR ¢ P )) ¢ {x, ¥y, 3) =0 (7—26)
in recourse to
19 . O L*

where L° stands for exial ancular momentur operator of

- 1 8 9 1 9°
5 sin ¢ Q¢ (sing 3‘;0) a sinij oy
with X = Rsin ¢eos¥,

v = Rsin @sin ¥,
z = Roos @,
A is normlization constant. Hlementary soiutions are gene-
rally determined by
ik o m
@ =A( ax) (

mipq

0 v 0 y» 0 yags (7—-28)
Oy




(7—4) Explicit HRepresentation of Components
¢f EBnergy Tensor

We shall take ¢ tO De P =A (0. +382) R’
Then, explicit representations of energy momentum tensor are

farnighed by
T _ =40 ,0_ (0, +8;) R,
TR =4 =—A( 02 (65 402> +02 (8°+8%) +0% (0 +8°)NFR

which leads us to those of stress (energy) tensor of, (7=29)

TU=—454 {4/R* —~7x*+6y*+172") /R°+(17x" +25%°
>&(z2+x2>+20z?’x2+17z“j/R’+7[z(2x2+10y2
+522)y g% —yi(zg' +x') —22°x* X (gf+x*)) /R
+63z°%x% (22 x* +y? (2 +x")) RV},

T2 =—u45A {4/R> — (177 +62° +17x* ) /R +( 175" +25 z°
(X P+ v+ Xty 17 IR +7(2 2P+ 10 2"
+5X2)X2y2—zz(x4—l—y4)—‘2X2Y2X(X2+Y2)]/R9
+63 Xy (2 v+ 22t +yPy1 RV},

TR =P =—45a {4/R* — (172" +6x"+177 )/ R°+ (17 z*
+o25xi(yi+y+20viet + 17y )R 4702 (22 +10%°
+5y2y yizt —xt (vl 42ty 2y 2 x (¥ +2H )R’
+63yizt (2y' 2z +x°(y +2"))/R"},

TH = 4= — 45 {—28/R¥+2 (17 (x* +7* +5') +35(y°n"
+riz? xR 7 ((yiet 2t Xyt ) 18 xtyte’
+7 (vt +' Py IR+ 126 (72t et xtyh)
/RYY},

T (=T¥) =% (:f”):—iﬁ‘;‘{fz X {5y +2") —2x")

—¢e3x* /RNy +27)),



(7—4) Explicit Representation of Gomponcents
of Energy Tensor

TH (=TBy = 3 (= f¥ )= (45 Az /R I X {12R* -5 (3 (2’
+x2) —By ) — (UM y  RHX(5 (2" +x"y -2y )—(63y"
SR NzP+x%) )
TR (=T? ) =f% (=f)=— (45 Axy /R )X {12R*—5 (3 (&’
+y%) —8z%) —(1az* /RI(5 (P +yTy —22") — (63"
RO +vi)
and the remainings of
T LTy == By =T (=T ) =P (=) =T® = T"

=¥ (=f¥)y =0 (Ref. 28).

Wach of the components of Maxwellean stressg is identical

with that of the corresponding ensrgy momentum tensor.



(8 1) Energy Densily of Gavitalien

§8 Loss of Weight
(8—1) Energy Density of G-field

Stresg energy of gravitation of,
2

W= g (8—1)
is contained in unit volume of the zeroth hyper surface (Ordin-
ary Physical Space ) in Riemannean gpace { Ref, 44 ) near a planet
(Ref. 40 ).
It particularly reduces to

e — b 4 x 10" ©TE8L (8—2)
upon the gurface of the Earth since

g— 980 TMgp?
which is about identical with stress one (— ng
fiedd of

2
) of slectric

B— 88 x10% Vem ,
ard im ahoit ten thousand times ordinary stress energy of mag-

netization.
Thig ie pregont not omly at the palace bul also at the old

Elack Joe' s cabin, and can become ensrgy eource which is more

general than that with Nuclear Fusion.

(8—2) Moebius Wound

We shall firetly trarelate Moeblus Band inlo alactric devics.
The following drawing shows Mobiueg wourd. Wea shall secondiy
make a trourus of Moebiusg wound, which forms Klein pottle ( the

following photo .

Photo 38

The next photo showe Moebiue Band ( educational model, resp-

ectively ). — g5 -



(8
(8

2) Moebius Wound
—3) Loss of G

Reversal of vector upon Moebius Ring

Fig. 92

&0

Moebius Wound

Snm

Fig.93




(8 2) Moebius Wound
(8 —3) Togs of G

(Fig. 94 )

{ Photo 39 )

(8-3) Loss of G

We shall feed electric current to Moebius Coil as in the
following ¥ig. Then, Klein Bottle ( torus coil ) loses weight
as on the following table. Experimental epecifications are ag



{8 - 4% Heturn of Hisiory

followe ~ torus coil /17T turne

Ampere (DC) e of Moebiue wound / own Weight
2 ~ 0058 of the coilZabout 30 gr#
3 0. 128 power supply / regulated [ NPS
4 0169 1510/ Dendy ) # Balaher / Bx
5 — {213 200N ( 200 gr Max and resolu-
6 —0.291 tion of 0.001 gr) (digital).

If we feed about 620 amperes
by superconduction, loge of g exceeds the own weight, leviting.

(8—4) Return of History

Ag tachyon is super signal, it catches past signal. Thern,
time reverscs. The system returns a history ( falling path by
g ), being repelled by g and attairing loss of g.

{ Photc 40 )

That ig toc say, we find that tachyon upon the first hyper
seorface goeg out onlo the Zeroth { physicel epace ).

Tor examyle, the following photo showg — (L 667 gr of loss.
The greater the currenl, the more the l0ss.

Tt attaine — 2 18 gr as tne next photo shows when we feed
— b —



{8 —4) Returu of ITistury

04 DC to a Mosbiug coil of 4 turns.

( Pnoto 41 )

Falling mase attains
bl .
e:«?(z)zz— 1. 960 em
at .~
t. = 72 gecond,

while does

7

g = — L 960 +— X 12=— 1.470em at t=23

after timereversal of /
t =2 gecond.
Fachyon of Zc¢ attalins
£=20¢c

al .~
Tt =10 seccond

whilse gignal does
£=10c¢c.
That tachyon catchee a signal of /
t—=-10 second ,
resulting in time reversal of this systsm.
Mags is repelled by g, resulting in loss of welght.
—102—



{8—5) Growth ¢f Siste Momenlem under G-Deceleration

(Fipg 95 )

We cut Moebius Band into 3.

hall length

double dength

( Fig.96 3

Cutting Moebius Strip into 3, we label |, 2 and 3. The 1
contirues onto the 3, the 2 onto iteelf and thno 3 onte the 1.
Ag shown in the following figure, we have 2 gtripe.

The one ig half another. Wave with the velocity of ¢ s on
the longer strip, that with the velocity of 2c¢ cannot but he
on the short. This reasgon is why tachyon flbws ir: Moebius
Strip (or Moebing wound coil ).

(8—5) Growth of State Momentum under
(z—Deceleration

Four momentum of the atoms of Barium Strontium Titanate or

Ferroxplana { or Ferrite) grows under circularly polariged
—104—



(8 —5F) Growih of Htate Momenium under G Deceleratiaon

electromagnetic field of (4—8) in recourse to (5—-4) such that

ip’ dp’
s me —— 86
dp ar a7
dt at
me —— Q(T)
dr

mea [ 2d%0s At + (& — d°) char j

(a®+ 1t +3°) chat — bcos ar

moa [(az— a® ) + 2a%css dTsechart :l

(a2+ v+ dz) -~ bfcos dTsec hat

— X mg ( T —reo ) , (8—-26)

which is invariant under positive wvalue of Q(o). We take Q(o)
to be positive since negative Q{o) furnishes negative growth
of total energy and, therefore, provokes pair annihilation
with ambient atmosphere ang it becomes dangercua. The fre—
qusncy condition is preseribed by

al, +Q < 0, (8-27)
irn which @,H, and ( are coupling constant, vertijcal magnetic
field (static) and rotation frequency of ejectric field {(of
Nuclear Elsctiric Resonance ), resﬁectively.'They are statec
of in the fifth chapter. Resultant state four momentum of
Barium Strontiuvm Titanate and Ferroxplana (or Ferrite) gan
be described by (5—1)y in which the growth of the third com—
ponent of resultant state four momentum is determined by

ar a’ - a°

s . g (T e ) (8-28>

at v v &




(8-5) Growth of State Momentum under G—Deceleration

M stands for reduced mass of ferroxplana (or ferrite) m and

Barium Strontium Titaznate m, such that

o,
™o,

M= (8-29)

They occupy different positions upon the zeroth hyper sur-
face (rhysical space) and form reduced mass, on which we
stated in appendixX (A-4). Growth of momentum reduces 1o that
cf current such that

ar e d az

Tl Coe
dt me 4dt art

1
— = =—x— 8-30
L . ( )

to the single charged particies where Idmaans the third com-~
ponent of current. Thusy we reasonably regard growth of gen—

eralized current to be.

ar ai’
c—— = (8-31)
at dt

to generalized flux of state density with coupling constant

a of electromagnetic interaction. We namely derive
k 2
ai®  uag a’~ d
i I e X . . 2" (T 2 = ) 5 (8=—32)
dt £ a + b+ d

in recourse to (8—28), which is noihing but growth of gquan-
tum current with G—deceleraticn. On the other hand, induc=—

tion law of Faradsy's is given by,

L ai’
Vo= —-— x-

02 at

(Ref. 46) .

Bloectric potential acrosg the inductor coupled with mutual

inductance L to vertical infinite line {ths line along

- 108 —



{8—-5) Growth of State Momentum under G—Deceleration

1'831J]ated current of 1—"3) becomes

2 2
A LHE a — d _
V=—-—"5 -3 "% 3 - (8-33)
gc a + b+ 4

(Faradays inducticn is done upon a cirole voupled wilh
mutual inductance L to vertical guantum current)

aZ e ?
az-f— o+ o ~ -l
holds since
a =L « H
2

is s0 small, and we can technologically and easily realize
1bl <& 141 -
We finally obiain

L
o= 2EEE ) = an) (8-34)
g'c

owing to (8-33).

(8-6) Thermodynamical and Statistical
Probability

Orientation of four momentum of an atom in space—time can be
split into those of axial angular momentum and polar on the
zeroth hyper surface (physical space). Then, orientation of
a pair of angular momentalaxial one and polar) X and § owns
four degrees of freedom in general, but they are orthogonal
such that

. 9=9 . X=0 . (8-35)
Three parameters are, therefore, nece&sary.
we werified orthogonality with reference to the commUtation
relations of (4-—4).
Let @+& and ¥ be Eulerian angles (in Fig.3) when magnetic

— 110 —



(86} Thermodynamical and Statistical Probability
field and electric [ thogse of circularly polarized electro-

pagneiic field of (4—-8) arse orthgonal are Xe—pxis and y» Te—

spectivelyj.

X H

[Eulerian angles formed by axial angular momentum and polar.
See the right leafJ
Vector producted vector JK X 4 of a pair of angular momentia

has bieer thought to form the angle Y witn ? axis. Magnetic
the angle of

field and axial angular momentum K forms
ew @ —cosacosWoos § —sina xsw o,

while eslectric field and polar one do that of,
m@:—mameﬂ+mamﬂ.

Boltzamannean factor becomes
i
((1 1HI oos ¢ cos § + P 1E! X sin ez sin &) cos ¥

kTT
— (I 1Hl Xsmasnf — PIE] mauﬁﬁ)] 3

our

= y and P =

where I = @ 1Ml = a |91
Lorentz factor having appeared since Hamiltonian {energy) is

given in recourse to {(3—13). Perforaming transformation of

integral expression:

a+ 8=
we find

and with reference 10

and o —‘ﬁ =V
of modified Begsel function of the lowesti order,

statistical and thermodynamical probability Z of an atom

(Also see the appendix (4-7)]) ofy
J‘:Io [a( cos ¥+ l)j I, Eb( msyf.— l)] x s ¥ cos Pa¥

Z
1 (ol s + 193] I (ol cs¥— 1)) X snFa¥



(8—6) Thermodynamical zand Statistical Probability

in which a and b stand for a pair of Boltzmannean factor of

I IHI
a = =T (8-37)
and
__ PIEI
b = % T ’ (8 38)

and ID(Z) in integrand for modified Bessel function OI the
lowest order, respectively. Applitudes of axial angular mo-

mentum and polar are determined by
1K1 =+ L(L+it) & »

191 = nf— 1 — L(I+1) | (2-19)

in recourse to ordinary spherical harmonics and ultra spher-

ijcal harmonics of {(2—17)s respectively.

(8~7) Locking Magnetic Field
Statistical and thermodynamical probability cbtained in the
former section is so small to our higest electromagnetic
field that we may not cmanufacture << Mdbius Generator (Quan-—
fum G—generator). We shall proceed to logking magnetic field
in order to cure the difficulty. Circuleation of sapin density

line of force is generated such that
F, 2
K = (8—41i)
Fig. 4

{circulation of spin density line of force)
around momenitum flux in recocurse 1o spin induction law of
(1-19) by tbe third cemponent of vector state momentum [ See
the aprpendix of (A—S)j, where M, stands for circumferential
corporent along & circle of radius T (in,Fig.4).
Beol tzmarnean facter becomes
amsnv'l = B

kT

(8-42)

exp F = exp



{8—7) Locking Magnetic Field
when rteal of torus magnetic field ih is applied along this
circulations in which ¥y means the value to unity degree of
freedom. Lorentz factor appears since the relation of (3-10)
ijg pregent Tetweer energy and Lorsntz scalar H.
Orisniation of ths third cemponent of vector state morentum
can Le evalusted by

p 0y = F (1) L {H (8—43)
where L(#) is the so—called Langevin function. ¥We namely de—
fire in order that POT) nay taks a maximal value Pﬂ(r) in
the 1imit for h to e infinity. We nave applied statistics
of paramagnetism (Eof.48) to the theary since Wg 18 present
cutsgide morentum pillar althcugh Barium Strontium Titanate
and Ferrite ate fTerroelectrics and ferromagnetic sublance,
resnectively. We have a philocsophy thatl spin deunsity is de—
termined Dy momsntum density while the latter %y former,
respectively, namely by

rot W = 47mp . (8-—+~45)
What we artange spin by magnetic field, we de momentum,
This effect can experimentally be verified.
Induced electTic potential 1s detlermined by

- - 22EE 5y (8-46)

g'c

when we take statistical thermodynamics intc consideraticon

in recourss to (8—-43) and with reference to
ap? ar’
= L{#)
dt adi

tangevin function attains L{F) m 0.99 10
ﬁ = 100

and does urity to & — = , We oust Lave
B a2 100

for sufficient irnduction obtained. On the other hand, it

follows that

in recourse to (8-41) arnd (§—42), We further derive

af(t) 2/ 1-fn

T

— 116—



(8—~7) Locking Magnetic Field

a —d
amce [2d s5in 4T + TX shart j Zh

&=

xTr?( (a’+p°+d ) chat — b s dr)

P 2

—

a —d
camzh [ 2d sw AT sechaT + ——— ibaT ]

T o2 a® + 0 +d° —voos 4T sechat

2
cmnizh azwd

—> - (T =) (8-47)
KT 2 alab+d

Emchar — 0y (T Dee )], when we take

1 dt R(T)
e = - ==
NEY 4art ne
into considerations (8—47) finmally reduces 1o
—omnih
AT {8—48)
T
sirnce a << 1 5, and 1bl <€1tdl as stated 1n (8—343,
while
. ab 3

to o and b of (8=37) and (8—38) and to the wvalue of

1A A ) A TR M
(2 <€] , b<&]l )
M, = Bohrmagneton,

M, appears becaluss amaplitudes of X and A of an atom 1 de—

termined by (2—19), and coupling censtant of electromagnetic
interactior o by

2/ mec Az —~1.8 X lﬂi:/gauss-sec .
we Tinally evaluate (8—-48) with

—mcabh
Ry — 5 {(§—~-50)

BRI I
whitch reduces 1o
1.8 x 10° % 160%x 3 x 10'%abh

100 Ay ; (8-51)
¥ x 300 % (2.5)

118 —



{8~7) Locking Magnetic Field

to tne value of m {mass of an atom )}

— 24

mz 10 ET 1
T = 300 K (roor temperature) and when we use a locking coil
of 2r = bcem and Bind circulation of spin with this mag—

netic field of ths ocil.
E, and H can not be so high as static (imaginary) magnetic
the amplitudes of g2lectromagnetic

field since they sterd for
have regsonable value

tield with high freguency, and can we
. 4
of E1::3 x 100 V. e and H1= 102gauss,respectively‘? (8=52)

We havetakenj& = %
(n:ll magnetic field) (0.G.8) into consideration. Qrthogonal

rotary magnetic field is induced owing to induction law of

Faraday's to rotary elec.ric field whe Wwe realize 1t with

three spherical condensers (as stated latar). We namely need
s locking magnetic field ofs ihaw 1071 gauss, {8~-53)

with reference to (8—-51) (8-53) must be anplied to spin den~-

sity line (in Fig.4). This gagnetic field is realized by a

toroidal Mobius coil. The imaginary current of,
2 (8—54)

J =~ 5.0 X 1 1 Aaope

H

Fa=T IV 1]

can sufficiently furnish (8-53) although it may vary
according to the size of coil. This current would be the key
to Mobius generator.

(8-8) Output Electric Potential

MBbius generator operaies when we put output coil as in Fig.O.

.

2r

’+—

Fig. 9
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(8—8) Output Electriec Potential
{Qutput coil around momentun pillar See the right, )
That electric potential becomes
¥ =6.0x 10°L(H esu
for f£ in (8—46) to be 4 = 100 gr, and L = 10°H
= 10 em (CG8)
at the surface of the eartih {g = 980 Gm/sﬂ?m 10° crg;/secz),
which Teducesg to :
Av 1.8 x 107V (D.C.) (8-55)
to a locking magnetic field of (8-53); mamely to
L(f) m= 99 & .
Mutual inductance betwsen vertical infinite line and toroiw-
dal c¢oil is determined by
L=d4mm (R- /K- ) (ces),
as disocussed in appendix (A-8), in whichn R and r wmean the
value in turns and radii of tordidal coil shown in Fig.9.
Our wvalue of
L=10"Has 10 om
corresponds with these of
n =10 turns
== 4cm 4y and T = 1 cm , respectively, which has no core, but
can’t be greater, since stationary current of generator is

g0 large.

(8-9) Output Power

We shell mext proceed to output power of that generator.
Flowing rate of energy from outer Riemannean space—time under
geogravitational deceleration is stated by

{%%l—+pcgc { T =200 ) (8—56)
when we use M in {8-29) to (5-5).
{(8—28) is modulated also with L{&) such that

g——:‘g———-—)ﬂgoL(ﬂ) , (8—57)
whern we ook at the fundamental Egn, of (b—1} and with ref—
erence 10

PP (r) = P (1) L(&) (8—58)

Statistical and thermpcdynamical probability has been taken
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(8=9) Output Power

into ceonegideration. It finally reduces to
av 100 x 10°x 3.0 x 100° L{¥) ergs / sc .

A2 3.0 X 100 L W

f 3.0 x 10° LY kW

A 3.0 X 100 Kw { 8-59)
to the value of # = 100gr in (8-57)s; and with L{Z) = 99 %,

where gaew 10® on /sed (8-60)
is used at the surface ¢f the earth; which becomes about a
sixth at the lunar surface.

m = m = 200gr
of Barium Strontium Titanate and Feroxplana (or Ferrite)
have been used with reference to (8-29). This value woulad
be reasonable with a locking coil of,

2r=56m:
R=4cm
and T = 1M,

and output cecil of the same order of size,

(8-10) Condenser Coil

We can feedback slectiric potential in eorder that we may ob—

tain rotary electric fisld, when wa st three coils as in

Fig.10 witn the same order of mutual inductance (with verti-—

cal infinite line) as output coil. That output electric gpo—

tential becomes @av i.8 X 100V (D.G.)

with the same inductance 0f Scill as output cne.

{Three Coils as Feedback Une and three spherical condenser.)

Mutual eleectric inducticn of condensers is determined by

Q=—-(Q+ Q)
.2q+%+%=0:
when we feedback this electric potsntial with the circuit

Fig.li, to three spherical condensers in Barjum Strontium

Titanate, where Q)@ and Q, stand for charges of the indi-

11
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(8—10) Condenser Coil
vidual covndeusers. It also follows
¢, ¥, + ¥, + ¢, ¥, =0,
_00(¥f1+¥’2+¥f3)=0,
S ¥+, + Y, =0, (8—61)
if we denote the capacitance of the same condensers with 00;
and their electric¢ potential with W}, y@ and ?;, respective—

ly. (8—=61) is nothing but the condition of three phases cur-
rent. It can, therefore, sunply rotary electric fjeld.

Fig. 11

(Circuit diagram three condensers amcng coils and three
spherical condensers.)

We shall call these coils star—conjunction condenser coil.
They are formed with Kleinean Rol| which is shown in Fig.48.

A
500,

(Kleinean Condenser Coils.)
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(8-11) Feedback Locking Coil

We shall so finally procesed ic locking coil that we may bind

circulatiion of spin.

We can derive an imaginary rTequested locking current of (8-
B8) in recourse to (8=54) and (8-58) when we put Kleinean
coils indicated in Fig.47 and Picture22 around growing mo—
mentum pillar in Fig.12.

Fig., 12

(Kieinean tube around momentun pillar. See the right.)
Upper limit of the absolute value of imaginary locking cur-—
rent is determined by

10X ¥R= ugeL(f) . (8—62)
Kleinean coil absorbs electromagnetic energy as shown in (8
—~18)y while that electric potential is induced by working

of G to quantum current pillars which is explaind by the
right hand side of {(8-—62). That is to says negative ohmigc
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{(8-11) Feedback Locking Coil
loss can not exceeds G—deceleration.

rR=10% o (8-63)
can he realized with Mdbius coil of pure cupper. We have the
Eqn. of inequality of,

10« BBx 16 = 168%10°%3 x 16'°% 0.99 ,
(8—64)

when

H =100 gr
which leads us to

K=1.73 x 10°4, (8-65)
{8—64) furnishes stationary locking magnetic field of (8-53h
where 10 stands for a factor of,

watt ~ergs %,
Total view of quantal G-generator is given in Fig.l3 with
reference to Fig.9, Fig.1l(0 and Fig.12 and also to lecking

coil for excitation.
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(8—11) Feedback Locking Coil

(Total View of Mobius G—generator)

(1) means locking coil also inFig.12,

(2) standing for excitation,

(3) for condenser coilalso in Fig.l10(iriplet),

@ feroutput coilalso in Fig.9,

(ifor magnetic pillar which supplies vertical static magneticfield,
%) for three spherical condensers,

(7)for Barium Strontiun Tj tanate Block and

(8 forFerrite Blocks respectively.

(5) would correspond With magnetizing field of ordinary dynamo.
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(9—1) G-field of Negative Energy
§ 9 Inverse Atomic Engine

&mtm1ofjnverse_atomic
engine.
Circulariy polarized electro-

magnetic field produced with
three spherical conde-
nsers charged by three pha-
geg current converts quant-
al fuel into negative energy
gtate,

(9—1) G-—field of Negative Energy

G—field of G and polar angular momentum f are related by,

1- 47 ¢
ag gtated in the firet chapter. If we put (9—1) into (1-—-4)
we obtain

0——— = A7 -gz - 275 gradq, (9—2)

1-4° c
the first term in the right hand side of which is about 1g
times the second. Gravitation of negative energy owns the
potential with opposite sign of that of pogitive energy.
Gravitation of negative energy is repulsive since that of
rositive energy attractive. Einsteinean Equation of
gravitation (Ref. 70} of,
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(9—1) G-Tield of Negative Energy

8TK
Or’=———1", (9-3)
c

furnishes the same result which shows 7°° of gtrain of Rie-
mannean space—time to have the different sign to
T <0,
and g-potential of ¢ to own the samely different gigns (¢
being potentialof g—field where G=-—grade, ),
WiTh 00 2¢
==

¢
We have xnown four kindsg of entities of

) occupied state of positive energy
“ unoccupied state of positive energy
¢) occuPied state of negative energy and finally
Ul unoccupied state of negative energy,
in which (a) and (&) belong to positive energy, whiie
() and (r) do to negative energy Ref. 71). We derive
TABLE1 1if we denote attractive gravitation with + and re-
pulsive with —,

TABLE 1

Occupied Unoccupied

Positive Energy + _

Negative Energy — +

1t woald be clear that gravitation Lo negative energy is
repulsive according To the following Gedanken Experi-

ment : (3) A mass occocuples s=—4,9mn at t =1 sec,
ard 5=—19,.6mn at t =2 sec,

when 1t freely falls from the origin near the gurface of the
garth. It will alsgo do s=—14, Tnun at T =3¢,
ard the origin a4t T — 4 sec,

0Ff tne clock gyncnronized with that of masz at infinity ir
time 1s reversed . The latter process is free rising which
1s nothing bul the motion of negative Lime since negatively

energied entity owns 4t
d_—S <0:
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(9—2) The Transformation with Nuclear
Electric Resonance

owing to the definition of toial energy of,
. _

as Vi-F
(de=xcy/1-F°4at),

energy being mementum along time or that velocity (except
mc’ ). In other worde, it is repelled by G-field, where

rest mass of, ,/qz_ p2

m:
44

W=mc

can never be negative. w 4 m

ct v 1-—/5°
can elither become positive 6r negatvive, but this mass 1s
quite different from the mass that specifles inertia of motion

(9—2) The Transformation with Nuclear
Electric Resonance

The component with negative enlergy exceeds when we take fre-
guency condition of (4—12) of Nuclear Eliscirlc Resonance
(NER) under circularly polarized electromagnetic field of
(4—38), namely quantal seeds fall into negatively energied
state. In virtue of g-deceleration we may apply growth of
four momentum of (5—3) to this NER, namely energy of the
gygtem of,

cin=Wm, _
enjoys negative growth. The flowing rate of g-siress energy
from cuter G-space 18 also expressed with (5—5) ., That of
resultant four momentum is expresged with (8—29), in which
reduced mass of 4 and statistical and thermodyrnamical proba-
bility are taken 1nto consideration,
Flectric field which are the components concerned with time
suffix of electromagnetic field plays an essential role 1n
Nuclear Electric Resonsnce, you would please neotice. Polar
angllar momentum which specifles Zittervewsegung are the com-
ponents done with time of angular momentum Lensor, correspon-
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(9—3) Thrust and OQutput of <Inverse-G Engine>

ded with wnich electric fileld within electromugnetic tensc:
playe an important role. FHElectric instruments which make
use of magnetic field are more than what do of eleactric fi-
1d. Wwhat do of electric field can regulate essentially rel
ativistic parameters such as energy, time or gravitation.
For instance, three phases induction motor has rotating
magnetic field, bvut none of machines does rotating
etectric field, while inverse-G engine owns 1it.

¥ have not yet know what occurs if we replace rotating
magnetic field with that electric in NMR, This
answer will be found in NER,

(9—3) Thrust and Qutput of
<Inverse-G Engine>

In accordance with the conclusions in the former section,
inverse~G moior 1s realized when we take the frequency con-
dition of (4—12) and use quantum gravitational generator
except @ output coil. This motor is roughly shown in Fig.7

Fig. 7.
{8ee the next page)

We exclte it Ly putiing a glant pulse intd @ exciting coll
from differentiators as stated in the last part of (8—10).
You had better drive 1t with the frequency condition Of (4
—12) ., Four momentum of quantal seeds grows such that

me 4 in (5—3), where 4 stands for the value of (8—5),

we shall denote the distribution of energy Of

c Qi =W with

uct oo diy) diz)

Wir=— — Ca?+1*+a) cha T —Dcosd T ), (9—4)
a" +d

since it is mainly concentrated upon the origin of zeroth
hyper surface (Ordinary Physical Space), in which d%
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(9—3) Thrust and Output of <Inverse—G Engine>
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(9—3) Thrust and Output of <Inverse—G Engine>>

means delta function of Dirac’s (Ref. 5)., and the
origin does center of mass of the guantal seeds. Q[uantal
seeds are composed of Barium Strontium Titanate and
Ferroxplana (or Ferrite). It also follows,

G ]
O x ATk sz L 0 560) Bt BB +0° +d”) cha T -1l eos A 1),
V1-p" . attd® Ox
G : 0
D—t =4 HC 52 44 dmi(al +1° +a%) cha T—DbPeos 4 D),
1_“:92 C a‘+d 0y
G, 47k 0
O _ AL 56 6 (= 6@ T+ ) cha T— VP s A T),

42 C 2_|_ 0z
vi-#g 2 +d (9—5)

in recourse to (9—2) and neglecting the first term in that
sxpression in comparison with the latter. We can soive (-
5) such that

G,  kpl@ +p'+d)eamr-pasdr)
v 1 —p‘z a2 +d2
=0 0 o 70 6(ziax’ dy° az’

xf 8"y f 8yd] Oz ‘ - _

- - = ¥+ gy ¥+ @—z¥

' (=56

owing to the famillar method oF retarded potential 1n elec—
trodynamics, wners 7T does not goncern lntegration since 1t
is thnought o he Enatsuean invariant time (Ref. 41)
and, therefore, the firftn variable. In recourse to the for
mata on delta function of,

: d »n 5, d =
jgmﬁzﬁ;)ﬁmdx:%—d)(?af)QKL
1 is non—negatlve integer),

we obtain

L Tkat@ T a e r—tosdr) 0 1,

a2+d2 ¢z 1 ’
(rP=xt+y? %), (9—7>
On the other hand.
| 1 — Qfﬁ)l’
Vi-p #e
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(a—3) Thrust and Oufput of <inverse—(G Engine=
holds in whic

2 2 2
pella +b +d ) cha T — 0 cosdr )

0/ @ :LLL;;_,{r}dxdydz:— REpY
o = o er(a’ +10° +a%) cha T —b°00s¢
« (omaxf ogay [ dwaz— 22K . ddz) w77 D cosdr)

(5—8)
since Lorentz factor concerns wlith center of mass of
what determines «—Tield. We Iinally Obtain

K4z
G, =—5: (9—9)
r
the remaining soluticns of which are
kux . KUY
GJL:T’ b, = rg"'—- (9—1 02
The repulsive gravitation OF,
X
6==£L (x, y, z) . (9—11)
r

ig genarated around <inverse atomic motor=. It is
repulsive because we let negative energy grow under the
frequency condition of (4—12) . The earth M 1s repelled oY

k # E'u'[

H
in — %-direction in recourse to (9—11), where M and R stand
for magss of the eartn and that radius, respectively. The
one is related to another by,

K1

-2
B

(9—13)

o=
L]

We have thougnt the eartn to be sphere and M is concentratel
uvon that center. We gnalia think apout an important proble:
for a while. The Z-sense in (9—11) -possSesses IO vhysical
character. Resonance magnetic field H 1s found e
orient in That sense 1P we examine (4—8) . :ean component
of resultact magneric fisld with clrocular polarization ramas~
ing in 7-gense while it enjoys a precession around Z—aX1S.
Charactaristic sense of (9—11) will be that of magnetic [ls-

Tou will noease fsnembor that the Z-zsense of magnetic
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(9—3) Thrust and Qutput of <Inverse—G Lngine>
quantum number of a nydrogen atom is magnetic adir-
ection wnen w2 calmiy taKe OfT The fisld (Ref. 58) altno-
uzh it can oe taken in any direction. <lnverse Atomic
Motor> is repelled by the earth at 4 with reference 10
(§—12), which 13 nothing but a Thrust of that motor.
It is unnecsassary for to again take g-deceleration into
considerstion as with chemical roekels since it is repelied
by #g instead ol—pug. Fayloads must, however, be iess Than
i since the lnstruments sexcepPt gquantal seeds possess ordin-
ary gravitation. The acceleration of & is determined by
az%g, (9-14)
when & paylioad is V, and it can escape from at the boltom oF
potential well of gravitation only when

-

Vo< M.
On the other hand, the flowing rate Of g-stress ensrgy into
the motor amocunts TO

%LZ‘::}XIUQ'L{WQ:SXI{)QIFP, (4—15)
whern M4 =1 1Ton,
namely with m, =m, = 2 tor,
since 1t is determined by (8—-29) . Most of that snergy was
fed to focking coil as stated in the elghtn chapter.

(9—15) is far greater than the output of Saturn of NASA
Jets and automoblles make use of gasoline as fuel and 1t is
finite. <inverse atomic motor> 1is nothing but ether
in gTfield (g-stress energy) which is infinitely present
aaywhere In tae unlverge., Picture 43 shows a gsketeh of
that motor. We can gee three spherical condensers which
furnish Nuclear Electric Resonance.

The freguency conditlon of negative energy is taken. FPalr
annhilation with ailr molecules occurs, with negative energy.
Vacuun of boundary layer 1s produced, which decresases Tlying
raesistances and makes her sall at very high speed.

(9—4} Expsrimental Estimation (Revieed) ( Ceased)
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(9—57) 3emiconductar Cuil Landau Oscillator

(9—5) Semiconductor Coil “Landau
Oscillator

Semiconductor of P type carries holssg. They enjoy negative en-
ergy state as they belong
to unoccupied state of sle-
ctron.

The left drawing indicates
g etrain energy as unoccupisd
state of particles ag it is
digtributed around Earth as
negative snergy. Coil of P
type semiconductor can, th-
erefore, absorb g strain
energy. It is difficult to,
for example, make coil by
round wire of S1 ag its

Holes as Bubbles in Walcer hardness almost egquals to
crystal.
Fig. 66 Wo ghall, therefore, make
a coil by combining many
transistors.

> c

Pig. 67 Co

Co
C

Fig. 68

The right drawing shows tThat conventional amplifier is composed
of, for example, A. B and C stage, and that gignal is amplified
by A etage, B and O, and then terminates.

AT thise time; wo shall combine C stage with A. Signal can be
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{9—5) Semiconductor Coil /Landau Oscillater

amplified infinite times as it is again done by A stage after the
amplification by A, B
and © stage. This rouand

amplifier ig, therefore,
called < Endlsss Ampl-
ifier >, which msakes
single turn of semico-
nductor coil.

Holee enjoy clockwise
rotation, while electrons
run counter clockwise,
when mixed current of
holeg and sisectrone i

present. Right turning
Fig. 82 g—field of holes is
supsrposed upon left turning g-field of electrons upon center.
Well, graviton owne the following properties/
A) Rest mase m ig gero/
m=10 (9 16)
Gravitor @, of course, obeys Klsin—Gorder fgn. of/
(O—&H ¥ (x, y, 2z, t) =10 (6—17)
that potential @ being expressed by Yukawa's one of /
Pu exp (—%-i R
- . (9-18)
where R, for exampls, stands for tne distance from center of

earth.
@ potential owns the form of /
kM
R
which implies that

B) That spin ie 2,/

s =2% (9—19)
which Eingtein found as his energy tensor is symmstric.
C) Anti-particle of graviton is nothing but graviton itself as
it is one of bosons and most of them have been so0.
D) @ of left polarization ige anti—particle of that of right one
a6 anti—paiticle of left polarized particlie ig that of right
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{(9—5) Semivenductor Coil Landau Oscillator

polarization (Ref., 76 ).
Superposeition of right turning g—field and left One,
thereforc, gives pair armhiietion of @ and anti graviton of G

of /
G+G— 4y - {9—-20)

which cceurs at the center of endless ampiifier ag carrisre of
trangigtor are elesctronsg and holes.
In gquantum theory of flelds it is ofteon discussed that quantal
energy W of ogeillating quantum ie expressed by,
W=tw=hf - (9—21)
where h, @ and f are Planck’s

constant, angular frequency
and frequency, respectively,
and

2nh=nh.
r of (9—20) does not stand
for Lorentz factor of )/

R
i vz
\-’]_(}}“)

but for photon.
Quantal ensrgy of this
slectrical system comes down

by this pair apnhilation as

praviton (¢ carries total ens-
rgy of W of elsctron or hole
M IMc® (ui

of / =M+ 5 o2+ g (g} + - (9-22)

( electrong, for example, either absorb or emlt gravitonsh
Tre frequency of <Tndless Amplifier of Takahashi TypeXr comes
down such that ,/

Time Prequency ( kHz) Time Frequsency ( kHz )
15736 20,625 1541 20.492

» 37 20.597 (o) !

» 38 20,556 15.565 20.402

v 39 20.525 (oomrenes ) |

# 41 20,4972 1601 20.3672

Experimenta) gpecificatione being/ Source UM3X2,/3 2Voly DO
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{9-6) Landan Oscillator of Tarus Shape

# Attenuation, L0/ Impedance Matching,/ 1 M2/ Date,/ 19,/September
/1981, Unit circuit of Takahashi’s can be applied to any trans-
istors of 28A, 28B or 283C typs.

It is difficult to make multi turne of endless amplifier if
The unit circuit is complicated even though it ie thecretically
possible. The following drawing indicates a simplified cireuit
with Z transistors only to each trangistor { We cannot uge coap-
1ling condensers to TC which has this type of coupling circuit).
Mr. Yoshitomo TAKAHASEI found this circuit. One may uss about
1K&Q and 50082, and should supply higher potential of about 15
volt DC.

(9—6) Landau Oscillator of
Torus Shape

We made 13 phages Landau oscillator ( Endlees Amplifier) by
combining units of
that oscillator of
Takahasghi Type ag in

the right drawing,

the collector reeis-
tor of which ig 56082
(%W type ), that co-
upling resistor being
L5K£(%W1Wpe&mol
Ons ghould notice odd
parity.

Iven stages give no
oecillation.

Owing o pair annh-
ilation of gravitons that frequency comes down with time as
upon the following table, which shows the result of 8 hours
drive,
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(9—6) Landauw Osciliator of Torus Shape

”fhoto al

Time Freguency (¥Hgz) Time Frequency(kHz)
7144 5530 9113 3.293
w45 3.500 (EEEERECEE ) !
v 48 3475 10214 3,22¢
v 4T 3456 [(S9sduoncs ) !
48 3.443 12:01 3.147
v 49 3.433 (e ) l
((Souciacea) i 141389 3092
g0 3.392 (ereeeen ) !
(e ) | 16:03 3078

Experimental spscifications are/ Date, 28,/ September, 1981 /B
Potential #DC 15 volt { stabilized ) /Attenuation,” L4y Z impedancs
Matching /1 M@/ Frequency Counter /FC 156 ( Trio Co, Lud)

Phage potertial { between neighbouring collectors ) is,/

). 2 volt AC,
while theoretical value 1s computed to be ./

2

WQ'@HI:DCX7 ----- (g 23)

=2 3077 volt ,
whers
DC—15 volt

denotes input potential, and
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(9—6) Landau Oscitlator of Torus Shape

n—=13
does number of atages.

One gets voltage ratio percentage 7 of/

?;?——IOO%X@.:—E%';MZ%
which exceeds 100% although
gquantal energy comes dowWn
agalnst time. The next photo
indicates oscillogram of 17
phases endless amplifier,
which is rectangular wave,

13 stages antomatically
generate 13 phasgses rectang-
nlar current.

The following oscillogram
cshowg the first phase of 21
gtaged endless amplifier
and the gscond.

Photo 35

One can find phase
ghift of 4% . Stabi-
lized power supply 1is
pasgsgable and dry bLatiery
18 beat.

Fhoto 36

(9—7) IC Coil/G Reactor

We can also make Landau Oscillator with SN7404 (Hex Invert:
ors} ag it hasg 6 invertors when we combine odd number of
invertors gerially ( See the next drawing ). 3 TCs of SNT7404
form 17 phases Landau QOscillator as,”
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(4—7)1C Coil”G Reactor

EX3—1=17
————————— o—
Fig. 85
GND
GND
SN7404x3
OZM%D ] 1
4 13 12 11 10 9 38
IR
- SN7404
1 2 3 4 5 & 7
L] L]
7T
Pig. 86

The former drawing is top view

although that of tubse or transistor
is bottom one.
IC coil as one may not uee resigt-
but only combine IN and OUT
of invertor

ors,

It is alego called <.G Reactor> as pair anchilation of gravitons

of /

Fliectrons and holes ars unlimited altkough Uraniam is limited.

g,

One can eagily make

GHG—4r.
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which 18 shown upon the

right drawing.

The frequency also

comes down against tims

ag upcon the next table,”

Quantal energy almost
attaing =zero when cell

is smaller and electron cur-
rent small againet decreasing

ratio,

Experimental specif-

ications being,

B Potential /UM3 X3 74 8% volte

DCACycle Counter/FO 756/
Impedance Matching./ 1 M2 /
Attenuation/ 0.1/ Date,/ 10,/
October ~ 1982.

Time Frequency( MHz)

6:4d44 4,971
(meeeeess I
19:22 4, 0785

(night )

g:00 2. 7064
(o l
14:05 943.686
@ ]
19:50 113069
(e 1
14:57 130.087
(v !
19259 {




{9~-8) Seike’s Law of Pair Anphilation of (rravitons

(9- 8) Seike's Law of Pair
Annhilation of Gravitons

< (0 Reactor of 13 phages endlese amplifier gives the curve
which We can express
with the Eqn. of /
W—w, W,e™
(9-24)
where W and W, are energy 35y 13¢-DCI5V
and asymptotic value of

36| KHz

energy as

f —r O
ag upon the following
drawing. We can also
expregs thie relation

with a differential HEqgn.

ot/

v Fig. 87
Il
W W
af
di
AT
where f stands for frequency. The former Tgn. resemblieés that
of radio activity of ./
N Nee ™o (9—25)
where N denotes the rumber of atoms.
We shall call thig relaticn <. Seike’s Law of Pair Annhilation

of Gravitong .

= — ¥

or
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{10=57% Infinite Degrees of Freedom of Torus

§ 10 Time Reversing Machine

(10—1) ~(1—4)y ({Roviecd ) ( Ceascd)

(10—5) Infinite Degrees of Freedom
of Torus

Landau osclilator of torusg shape is possessed of 2 degroes of

round freedcm as 1t 1s
composed of circular
bandau oscillators.
The following drawing
indicates that 1ts
unite can boe composed
of emallor circalar

ogciliators of Larndsn's.

We can agaln compo-
eed emall units of

gmaliler circular ogcillatore of Landau’s.

We can, therefore, obtaln even 5 degrees of freedom of torus
or 6 depreses Of that frecdom ag the iaft drawing shows.

We finally obtain theorsetical irfinite degrcos of that fresdom.
The right vhoto Indicates thie relation that there ig a pergon
who hag a book, on which a perason owrg & boodlk, on which a man
hae =& hook, on which (------+) and 20 on beyond.

By making Landau ozci-
llator of multi degrees

of roand freedom with thie
in mihd we can get grezter
incoming rate of negative
energy and higher percen-
ftage efFficiency of OUT
potential To driving one.

— 164 —



llol-l'l.v ..l..-_r- =, I
nl-“l- _.-\ .w....f- ..)....._,_-l“_u.__f..n-_ft. -i-_;.r/ _.. ) »
R W S ST R Loy e N
[ -

H . oo
L TN X3 A
o . & ey ’
S T A0 Ry
"‘ ﬁ‘ 3 - [ L] i!"l "I.-.
iy i - . 4_.l..-r# .. _r“r
LI ."-un_-.- !il_}x_- k .’:I-.-. ..- r- ,
H o * v . -
ma-l...-_f L .“. ) I..-.lo S . -\t.r ;-.-.._._la,
E - | A.... K PN R
e wen, v p Y AL SR
ML T 1lﬂ4 M —_—
VY et R o
" Ty

¢
X
N
Fig.79

P & y N

o lllﬁd.}l. Sy P ..1-....\_ (Y . \
..._nwl../w .—. 3 ..-...A— ./r m.n.a.. -;_r- U .._.annvuv— ..J..-_r... ..____ - ¥,
F4 _p-u“_.._._. /ln\- ﬂll\‘ -_..o..-_—’ : n_.. L ._._. .uqy -.l.n-l \
-ﬂrll-wrro“__.a t w -—.1_! Jn.- he ..»{l- ﬁll_!“
S REEN e - "l

X, BIVE .. .m e ..N,.,.,mﬂ....

NI Pt i Ry e A

ﬂ{_.“l - \1- e a'nﬁl_-.x-.._ _-..-_/r.-_..iltu Sunnty | -d-.r.-.-“.v.l I“_r“li ..._t\ hl"

— 166 —

Fig.32



(10—6) Heisenbergean Chain of Uncecrtainty

(10-6) Heisenbergean Chain of
Uncertainty

With the former photo in mind, we shall examine uncertainty
of Heigenbergs relativistically.

It maintains that either momentum P or co-ordinate r is
uncertain by the relation cf .

AzAp - dx,

which leads to that in the v-direction of,
h==dp? - 4y,

and aiso to that in the z-direction aof,
h=dp? 4z,

where p and p°® etand for the 2nd component of momentum and the
ird one, respsctively.
Relativistically we naturally obtain that in time-direction
of,
B=d4p (cdi)

As we often discussed, p°{momentum in time-direetion) and ene-
rgy W oare related by,
Woe =p0 (ipo=p"),
which leads ug to,
R=dW - 4¢,
in which ct=x°,
and r*=1z",
are well known.
it maintaing that.”

< Time becomes uncertain when one tries to preclsely determins
energy W, while energy becomes uncertain when one does to pre-
cigely observe time. >

For example, uncertainty of time of,
t=15 minute 30 second + 4¢
Occure when we precigely observe energy W at,
t=15 minute 30 second.
The left drawing schematically indicatss that time of,
t=15 minute 30 second
18 superposed sither on,
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{10—6) Heisenbergean Chain of Uncertainty

fiony = 15 minuie 29 second
t=o0 or
A t, = 15 minute 31 second,
in recourse t0 which there ig an
infinite chain of time from,
t=—c0
to
f =oo.
t=20 t=14
______ e SRt
t=—co
Fig., 80

Cn the other hand, we shall
examine magg with negative

energy repelled by G.
Magse attains
7 t=

§= = i* = —490 em Fig, 81

at
t =1 second,
after it begine to fall in g space at
t=10,
and does

_ ¥ .9 i
s= S t'=—F-{2)=—19600m ,

at
i =2 second,
while doee

§=— 1.960—%' 12°=—1,470 em ,

at
=3 second

after time reversal at
t =2 second
28 it ig repelled by &, and it does

— 17—



(10—6) Heisenbergesa Chain of Uncertsinty

s=-1,960+4 - (2)'=0,
at
t = 4 second ,
which ie nothing but the initial poeition.

It ie reasonable to understand that time begine to reverse
at,

t =2 second
We shall again remember that energy ie nothing but ¢ times
momentum in time direction such that/

W= cp =mec* %r‘— (dr =+ /T- & dt).
We accordingly obtain/

%-co,

to negatively energied body.

That ie to eay, velocty along time axise ie negative with
respect to proper time. Time becomee negative with proper
time, which is alwayse positive. Namely, time reverses. We can
g0 backwards along the infinite chain of Heisenbergean uncert-
ainty, stated before. The former photo of books on the cover
of the other book statee thie phyeical fact.

The following photo explaine one of the propertiees of crea-
ture, in which egge stand for genes. A hen ie determined to

Photo 33
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{10—7) Time Reflection of Elcotromagnetic Wave

appear 1n gene. This hen owns gsnes, in which a hen is deter-
mind to do, and this hen owns genaog,

Negative enorgy, tTime reverssl and biophysical chain can bc
related together. If onge makes nucleic acid, can he make g
creature onty with it 9 No, thoero snould be an infinite chain
0f background time.

About 8 degrees of froedom of lorus of Landaun oscillator witl
generate negaltive cnergy field, which will give reversible time
field, and by which one can get ons of the svlutions of pugules
with regpsct to 3, time and Life at tho same Lime. Relativiatic
biophyeica will alsc appear.

(10-7) Time Reflection of
Electromagnetic Wave

We shall make <<Mixed
Transistorized Coil > /\
with PNP tranesistors 1K 2 (%W)
and NPNs as uptn the 2oR175
following drawing.
Oscillation of 3 ph- 5004

25B175 5008 15V
a8eB mixed one stops —0 —

when one feede higher +
. 1K (4w,

potential (about 15 1

volt ), but 9 phases

cne enjoys oscillation

1K (W)

when one does even 15
Voit DO bBetwesn linses
(28B175X54+2802120 25C2120
X 4 ) and delta pulse
appear asg the suceed-
ing oscillogramm indicates botween collectors of 28C2120 (Also
gee the next drawing ).

Delta function can be obtained when angular frecquency of

_ sinwi
f(r)—iﬂ,r

5002 ()

Fig. 88
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(10-7) Time Reflection of Electromagnetic Wave

Photo 37

FArEin =

Fig. 89

goee up to infinity as it is
defined by the limit of /

8 (D) =gim —SLT

@+

nt

as shown upon the following

drawing.

Peak at origin attain

infinity and wave lenght does

zero when
w -—

Very high frequency corre-

eponds

- =

with negative time

to <Mixed Transis-
torized Coil > when
that frequency comes
down as upon the
next drawing.

That is to say,
time of delta pulse
ie reflected (nega-
tive time ).

Detection of thie
pulse givee fading
ae that of Moscow



(10 -7) Time HKeflection nf Electromagnetic Wave
Broad Casting.

We shall remember
relativigtic ( four

dimensional ) dista-
3 nce of /
. ri= gttt + 22—t {?

; or/
M =zttt +2i+ct i Bu-

o 0 lidean space—time)

Blectromagnetic

wave from Moscow

Fig. 91 owng fading, and
that { relativistic)
distance is great when it belonge tc remote time. This fading
maintaine that it belongs to remote past.

r is high in Fuelidsan space—time. We sghouid remember that
Gegenbauer ultra epherical harmonice can be Obtalned whon it
is analytically continued from Minkowskean space—time on to
Byclidean space -time,

Direction of current in 2802120 (NDPN type transistor) of
< Mixed Trangigtorized Coil>» is opposite to that of Z8BI175
(PNF type of transistor), which corresponds with opposite
turning coil.

Ag hole is in state of negative energy,

dt
I 2 -
W=mc it < ()
which leads as to ./
di .
ar <=9

and to negative time,/
£ =0,
which generates the pulss of very high « (delta pulse ).
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(11=1) Bxperimental Results in United Kingdom
§ 11 Inverse-G Space Vehicle of
John R.R. Searl's

(11—1) Experimental Results in
Uni ted Kingdom

Rotating electric field of inverse-G engin 1is real'-
ized by @ charging or discharging n spherical conden-
sers set at n verteces of regular n-polygon with n-phases
currentor@rotating electric dipole of a pair
of charged spheres. John R.R. Sear | (17 Stephen’s Close,
MORT IMER, Berkshire, RG7—3TX, ENGLAND) produced inver-
se-G field by rotating segmented rotors between electromag-
nets, which corresponds with the method of . The craft

was dramatically repelled by the earth g-field as calculated
in the chapter 10, and just as in Picture 17 and 18.

Picture 17

Mr. Sear| (the left) and his disc which drama-
tically floats in g-space.



(11—1) Experimentsl Results in United Kingdom

Picture 18

Mr. Searl, one of his friends and his disc
which shows pair annhilation glow on the rim.

On the other hand, induced electric potential as stated by
(8—17), 1is obtained, which is fed back to electro-magnets.
The carft herself is a great electric generator. In virtue
of this feed -back the rotor speeds up on and on, and finally
attains a certain equilibrium. It is, then, at the electric
potential of some modest 1 O'° (ten trillion) vol t.

Ambient vacuum which is characteristic to negative energy
(concerned with pair annhilation) makes it keep such an
ultra high electric potential.

On the third hand, flowing rate of energy from outer g-space
is estimated 1 0" ~1 0" (mndreds trillion or ten thousands
trillion) watts (thousands tillion ~ ten trillion horse-
power), which has been predicted by (8—28) . This working
corresponds with u = 5 ton in (8-28) .

Mr. Searl has constructed 40 vehicles, several of which
are operating. Most. of them have the diameter of about Twen-
ty feet, while the largest tnat of about. 38 feet, (Ref .68
and 69) . He sent her drawing as in Fig. 35.



(11—=1) Experimental Results in United Kingdom

——— 45 200

Fig. 35 IEI

Rough Sketch of Starship Ezekiel which is
intended to go over to the moon.

National Space Research Consortium 1is constric-
ting <Starship Ezekiel> with the diameter of 46. 20
meter and the sumit of 6.8m, with which manned lunar
flight is planned. The pressure in the cabin is adjustatle
from 6 LBS per SQ. inch to 7 LBS per SQ. inch,
temparature from 80O° F to 106°F.

He showed her structure as in Picture 19.

Picture 19 ” Structure of Searl’s Disc.

(11—2) The Searl Effects

M Inverse Gravitation
Gravitation to negative energy state is repulsive, according
to0 which negatively energied body is repelled by Earth.
The law of Newtonian gravitation is described by,

kMm (11-1)

f:I}.




(11— 2} The Searl Effects

in which f stands for a force when masses of m and M inter-—
act at the distance of r.

Positive sign corresponds with attractive force. 0On the
other hand, we have known Einsteinean formula of
mass—-energy relation of,

W =mea? {(11—2)

and Wo=Mc?, (11-—3)
from which we have
W

m= 57 (11—4)

and M:;U; , (11-58)

If we put (11—4) and (11—5) iInto (11—-1), we derive

k WWw/
f =—F—F {11—6>
o r
in which the signs of f are different in the cases of
£ X £, =4
for W0 or W2 0.

They are tabulated in TABLRES,

TABLE 5
W + + - —
—
Wr + _ _|_ —
T + - | - +

The positive sign stands for attractive gravitation. while
the negative for repulsive., Positively snergisd hodiss or
negatively energied ones attract each other, while repulsive
force acts upon pogitively energied body and negatively.

2y Electromagnetic Induction with

G-deceleration

The generator produces D.C. static field with negative pola-
rity at the rim and pesitive st the center, However the
magnetic field from the generator produces inducticon in con-
ductive loops when there is no relative movement. It 3eems
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(11— 2y The Searl Effacis

therefcrs that the fiux from the genersator is continuelly
expanding. <This implissg that growth of internal momentum
of atoms in rotor by g- deceleration of (8—10) p.oduces
elsctromaznetlic induction.

) Werking of Gravitation
G-8tress energy flows into the craft when gravitation works
Upon tne growing internal momentum. Thal working amounts
to 10" watts (X thousands biilion horsepower) ~ 1O
watts (010 Trillion norsepower) which is about identical
with the value of (8—29) of

4 = b ton.

4) Threshold Electric Potential
The craft sufficilently operates at the potentlal higher than
10 volt, which implies that thermodynamical provavility
attains Liftz1
(See (8—18) ] at such a higher potential,

G) Thrust
Horizontal propulsion can also be obtained by changing the
potential distribution of the surface of the craft.
This 1s because The DPlane upon which electric field rotates
[ See (4—8) ) inclines.

6 Pair Annhilation Gl|ow
Pair ammhilation glves rigse to a transluscent glow surroun-—
ding the craft and glowing trails such that

e +e =71, (11-17)

which 1s accompanied with nsgative energy.

(7) Permanent Electric Potarity
Une notlices that after worklng near craft or generators he
has a <cobweb> sensation on the skin. His clothes clung
to him and also the bed linen. This was accompanied by
occasional crackling and lasted some hours. This effect
could be attributed to a permanent polarity. <Paraelec-—
tric substance> such as clothes can enjoy a sufflcent
polarity with Lih—1, (11—8)
by higher electromagnetic field swrrounding a craft.



{11—3) Geodesiec Sailing towards the Moon
(The Lunar Trip)

® Matter Snatch during Acceleration
Tnis occurs when the craft is on the ground and the drive is
suddenly switchned on, The rising crafl takes up a lump of
the ground with it, leaving the wWell known hols in the ground.

(11—3) Geodesic Sailing towards
the Moon (The Lunar Trip)

Ordinary chemical rockets gst large Kinetic energy at launch,
but 1t is gradually lost in g-field of the earth and reaches
the egquilibrium point of gravitation of the sarth-moon line.
Passing that point it is graduslly accelerated, while <<inv-
erse atomic motor> is gradually dcne, bul decelerated
in g—fisld of the moon, after reaching the maxXimal velocity
at the sgquilibrium point,
Under g-acceleration of the earth EQn. of motion may easily
be found Lo have The form of,

a’x KM

(u+ v) 7 = (4 —y) = > (11—9)
adt X

where 4 and v are defined Ty (9—14) .

z:l’j:::L (11—10)
nolds when quantal seeds are far greater than payloads,
namely the vehicle has quite a large <inverse—G engine>.
(11—9) leads ugs TO

2
dleﬂf : (11—11)
at X
where X, ¥ and M stand for the distance from center of the
earth on the earth—-moon | ine, Newtonean constant of

gravitation and mass of the earth, respectively.

We know a relation of (9—1 3)among the radius of The sarth

and them. (11—11) reduces to a differential Eqn. of

separable variable with respect o p and x, if we putl
dx

at
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(11— 3) Geodesic Sailing towards the Moon
(The Lunar Trip)

We shall suppose that the vehlcle start from the resting state
on the surface of the earth, namely at Tthe boundary condition

of p=20,
at x =R,
Then. we find an Egn. oOF.
dx — H
f— R _— — “)
dt vag 1-= (11—12
3 4
- 2.0 ad
and., v 2KM t=2R" | Rk (11-13>
. o cos
_E{
with sin § =/ 2% (11—14)
X
The moon is situated from the earth
8a=238.44x10"Kn, (11—15)
on the earth-moon {ine, while her mass being
m=0.0123AU. (11—16)

If the equilibrium point ig r, from the earth and r, from
the moon we find
Kx1 Kx0.0123

= ' (11—17)
2 Z
. r]. rz
which lgads us To
I‘l .
75*-— 9.02 , (11—18)
We namely derive r,=34.6 x 10" kn. (11-19)

The maximal velocity of <inverse—G space vehiclex>
on her lunar trip 1s,

d =
— = 11.3 K, (11—20)
qt 1 seC,

in recourse to (11—12) .

We shall call this process <geodesic sailting> gince

sne only depends upon g-acceleration, following A, Einste|n
who called g-trajectory <geodetic>. This trajectry can
represent the nearest path however space—time may be
curved,

The integral of (11-13) of,

‘a0

0 cos

— 182 —
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(11=3) Geodesic Sailing towards the Moon
(The Lunar Trip)

reduces 1O

=%U\/1+i +1n (A+y/1+4 )J=%[——-——-'mr;'m+ln > x—il,;_s/:? )
i
(=S ../1+1’ ail), (11—-22)
0
if we put tan ) = 4 . Using

x=r1 =34.5% 10" ka,

of (11—13) and (11—19) . we obtain

~ 8,94 hours , (11-23)
which shows that it takes only about nine hours 10 reach
the g-field of the moon.
You will please remember that chemical rockets of NASA take
nearly three days, and how fast it is. We finally show
<inverse—~G space vehicle> which is on the ground.

Picture 20

Inverse-G Space Vehicle on the ground.



(11-3) Geodesic Sailing towards the Moon (The Lunsr Trip)
Dip of geomagnetic field is 69 degree in Berkshire. Leaning
angle of Levity Disec ies algo 69 degree in Picturel?

Fig. 50

(Inverse—G S8pace Vehicle orients in geomagnetic direction)

Namely, Z—direction of Nuclear Electric Resonance coincides

with geomagnetic. We can find that geomagnetic field is made
use of resonance magnetic field.

Mr. €earl has been constructing Demonstration Craft #] (Feb—

ruary in 1972). Cabin of this vehicle i& shown on Picture
#23y where we can find a large number of controlling panels,

Pic.23ﬂ

o qﬁ}J
'/

This Demonstration Craft is to be used as training vehicle
of launching and landing. S8tar Ship Ezekiel with diameter of
about 50 meters isy furthermore, constructed for Lunar Journey.

i



(12— 2) Distribution of Energy Tensor

§ 12 The Tenth Planet

(12—1) Introduction

It has often been sald that unknown Planets nmay be present
outside Pluto., We shall examine this problem and where
it is. The planets in the solar system are Mercury,
Venus, Earth, Mars. Jupiter, Saturn, Uranus,
Neptune and Pluto, so far. The planet Jjust cutside
Pluto is the tenth. These nine ones are clagsified into
Three groups of (A)Terrestrial Planets (Mercury, Venus,
Farth and Mars). BiGiant Planets (Jupiter, Saturn, Jra-
nus and Neptune) and finally ) Pluto (which belongs to
Terrestrial Planets).

(12—2) Distribution of Energy Tensor

Fotential of energy momentum tenscor of electromagnetic field
obeys Tetra-Harmonic Equation of,

o' ¢ w=10, (12—1)
ag stated in the gsventh chapter, which further takes the
form of,

4 ¢y (12—2)
= aa; N aayz N aa;a . @yﬁac;zz e azﬁa;yﬂ M axﬁaasyz
+ 4 é‘xﬁai;zz +4 ayﬁaa:xz +4 azﬁa;y" +6 6X4a;y4 16 8X45224
M"a_f@?;";?“z afagfazz Tz afa?‘sazz Tz zeéiﬁ:@ﬁ

xe(x, v, z) =0,
to static field, while that of energy momentum tensor of g-
fiald of ¥ ® (J=k, 7, k=1~4) is thougnt to 2180 obey
the equation with the form of (12—1) or {(12—2) . TFor B -
field G is related to polar angular momentum density of 4
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{(12—2) Distribution of Energy Tensor
Las stated in {(9-1)) by,
G ¥
e 222—4—9, (12—3)
NETY: ©
which implies elasticity in the direction of time sifncs
1 a=¢nM", MY, MY
are the components of total angular momentum denslity assoc-—
iated with time-guffix.

The two masses with positive energy which attract each oOther
{(See Pig. 36) are bound Ty polar angulsr momentum density

line of force whose flux would shrink iongitudinally, while
elongate laterally.

Polar Angular Momentum
Density Lines of Force
which would shrink lon-
gitudinally, while elon-

gate laterallv.

Potential ¥*(x, v. z) of energy momentum Tensor in static
g-field obeys partial differential equation of
the eighth order of,

4% (x, v, m =0, (12—4)
. ik
TV — —(BE T R WTHOLYT , (12-5)
in recourgse To tne same <ind of analysis whicn leads to
(7—24) . The appendix (4—9) states that stress tensor (on

hyper surfacses) 1s governed Dy thie same potentlal as energy
momentiyn tengor,
winge to (12—4) and (12—5) . energy momentuwse Lensor of ek
assoclated witn the zeroth hyper surface are!:

Tﬂl — TOZ :Tr.‘a3 -0,
2;;5 ol 17K+ ) 4350 A XXV

o]

T — 454 {—
47 (P4l )+ 18 A+ G L A YO IR
+1260 S+ K e o Y N (12—6)
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12— 3) Mass Distribuotion of Terrestrial Flanets

4 - o )
where T*' differs from T° by the factor of — 1,

co=v (PP — (T + (T% ¥+ (TB2 3 — 7% , (12-7)

stands for mass density, because four momentum density of
(p, 1q) is associated with the tensor by,

p:(TOJ‘, TM, TM) 1

q=—-T". (12-8)
For T means the third component of momentum on the zeroth
hy'per surfacs.

(12—~3) Mass Distribution of
Terrestrial Planets

AT the origin of solar system Mass distribution is governed
by the eguation cof (12—4) and (12—5), center 0f the sun
being the origin., We obtain
_ g Mta M

ST TN,
when we denote the dlstance from the origin to the point which
divides a, ~a, by M, : My, a,. a, and a, being radii of
Earth, Mars and Venus. Mass insids infinite cylinder
with inner radius of &, and outer of X, is concentrated onto
M,, while that inside infinite (vertical) one with inner
radius of x, and outer of a, 1s done onto M, when M, and M,
are at a certain radius of the orvit of M,

Inner radius and outer of vertical infinite
cylinder which contained the mass that is
concentrated upon the planet.
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{12—3) Mass Distribution of Terrevatrial Planets

This point is supposed to divide mass distribution at the
origin of formation of solar system. We namely have a

relation OF,
00

X, ST .
My=f"'f f |=—Irdrazade
xz-uo O L
with [ X =Trows¢,
ﬁy:rsmgo,
L& =2, (12—10)
since magss distributed inside a vertical infinijite

cylinder with inner radius of X, and outer of x, is con-
centrated upon M, .
Performing integrations, we obtain
:Blog%, (12—11)
tecause The last term of the part which is inversely propo-
rtional to R' is, for ingstance,
I:f% = 2 1267 s gsw' @ rd rdzdy

IJ i

- (r*+2%7

xg © 7 Podgur'pdrazae
=252 [ f “h
2

2._.
¢ (xX*+52)2

This integrand becomes

T

X i -
22521‘%5—]2003&@” wd gsuf g Ag,  (12-12)
X, 0 [
if we put z = riand,
All the remaining Terms are proportional to
5
=,
%

which can be transformed into log and we Tinally ohtain (12—11)

Normalization constant of B can be determined such that
B=4. 5776 (A, U, ) (12-—13}

in virtue of mase of Earth, Venus and Mars, and radii

of their orbits, where these constants are tabuwlated in

TAB. 2.
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{12—4) The Orbit of the Tenth Planet
TABLK 2
~—_ | Mercury Venus Earth Mars Pluto
radii 0.3871 0.7233 1.0 0 1.o237 39 0
mass 0.054 0.815 1.00 0.103 0.8

We have supposed their orbits to almost be clrcles since
thelir eccentricities are so small. With reference to (12—
13) and the TABLE 2 we can calculats massses of Mercury,
Venus and Mars as in TABLE 3.

TABLE 3
— Mercury | Venus Earth Mars
PRCHIS 0,054 0.815 1.00 0.108
0.105 1.452 1.0 G 0.068
theery (ratlfae,§ger} (rat?ae,ﬁger) (standard) crms:l?g{ler)

The distribution law ©0f logarithm is quite appropriate to

Terrestrial Planets. We must select the other norma-

lizaticon constant with the boundary condition of Jupiter
to Giant Planets,

(12—4) The Orbit of the Tenth Planet

Normalization constant to Terrestrial FPlanets are applied

to Plute and the other planets since mass of Pluto is !
M, =08 (A UT.)

which i1s nearer to mass . of the earth.

x, Oof the radius which determines mass distribution betweaen
Pluto and the Tenth Planet is calculated by
0.8:4.57761%—-—-}&-*—- (12—14)
39112
where X, =139.112 (A, U.)

shows the point which divides mass distribution between
— 206 —



(12— 4) The Orbit of the Tenth Planet
Neptune and Pluto. We namely obtain
x,=6202 (A, U,), (12—15)

Next we shall suppose that the Tenth Planet belongs to

Terrestrial Family ani owns tne mass of about 0.8 A. U,

ihen, x,, of the radius of outer dividing point 1s determined

R t‘.1.8::?::,4.5?'?6lc»gl
6202

namely deriving X, ~94.20. (12—17)

On the other hand, a  of the orbit of the Tenth Plan-

1Q
et iz calculated such that

0.8a, +0.8a,,

X, =6202= RN (12-18)
in recourse to (12-—9), having namely
a,=84.54, (12-19
which reduces To
8, =1257X10 kn, (12-20)
if we take the number of I.A.U.=1495x% 10 Kn.
On the third hand, astrconomers predlcted that
amalzsxm‘;h, (12—21)

in virtus of the orbits of comets (Ref. 72), which

i5 just ldentical with our result. We can predict that the
Tenth Planet is present at the distance of 126 x 10’ Kn
from thne sun, owing to both of the conclusions.
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§ 13 Periodic Chart of
Elementary Particles

(13—1) Intrinstic Principal
Quantum Number

In zccordance with orbital quantum number of L of,

<1 >=T(L+1)n*, (13—1)
spin.quantum number of s of,
<& ==s(s+1)n°. (13—2)

is present. On the otner hand. principal quantum nu-
mber of n is defined with relativistic angular mo-
men tum (3ee the chapter 2} of,
<+ (i == —-1)10°. (13—3)
The components with time suffices id of relativistic spin
are also present. in recourse to which we naturally introduce
< g +(ily: == (2 -1>1n%, (13—4)
in analogy of.
(13—1) &———=(13—-2).
We shall call 4 <intrinsic principal quantum num-
ber > which alsoc takes the eigen value of half odd integer
since s is so although L nonnegative integer Cily.
To electrons we know that
1 4 1
—E'ﬁi’?’

i l= —%ﬁfﬁ

—nt (13—5)
while id mey vake various eigen values to particles in general
where 7' stands for Diracean spinor.
Then. the eigen value of 14 associated with orbvitval motion
of particles are sxpressed by

< g =0 —1)-L(L+1)IR". (13—6)
(See the chapter 2), where we have applied unitary trick To
Klein-Gordon Equation. Accordingly. the eigen value
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(183—1) Intrinsic Principal Quantum Number

classified with (4, s) as that of elements with (n, L). We
have known spin quantum numbers of all the elementary parti-
cles. We emphatically find that mass of a particle with
s::LE is a livtle less than that with s = 0 which has the
same intrinsic principal quantal number of A.
Meanwhile we have known that 4 meson owns a 1little less mass
than m© meson. which seems to imply that they do the same 4
but the former does,s::rbé while the latter s=0. Accordin-
gly we may determine their 4 so that the ratio of their mas-
ses may be 134.975 ! 1056. 669, which leads us to

=2,
We, therefore. obtain normalization ccnstant of
134.975 __ .
K:——~r_2:~77.91409s (13—-13)
v 25—1

making use of 7’ as boundary condition.
This normalization constant gives a little larger mass of
calculation of
my = 116. 8711 Mev.

than observed. .
If we take A =3

2 5

e A =2 or A =
which is just after, theoretical ratio of their masses does
not agree with observed. Thus, we may determine intrinsic
princiral quantum number of pion and muon to be

A= 2. (13-14)

and that mass of muon is a little smaller than that of pion
because of the difference of spin quamtum number of s.

which is just befor

(13—2) Classification with Intrinsic
Principal Quantum Number and Spin

In recourse to The conclusion in the former section we have
the following periodic chart making use of normaligation
constant of (13—13), where X 2, 10 and 9 stand for the

gtate of s =0, s =%



(13—2)

s =1

respectively.

and

S

3

2

L)

in the periodic chart of elements.

means that it is in the eigen state of A=20 and s =4,

Theilr symbols correspond with s.
for instance,

Classification with Intrinsic Principal
Quantum Number and Spin

p, dand f
(20 4)

2

TABLE 6
part-|eigen theory observation
icles state (Mev) (Mev)
7 ( 2 3 ) 116. 871 105. 659
+
T 139.5
8 (2 K 134,975 (i
T 134.975
) 13
K (—?2-—»){() 500 411 493. 88
p 938 256
12 29 374
n 2 Y 9 7 939. 550
. 29 '
1° (—2—3) 1,125 041 1,115 6
3" 41 ,189. 4
) (5 3 1,203 227 ,192. 5
2 ,197 3
¢ ( ) 1,321. 578 821
E° LY e ’ ' , 315
QO (3£~ﬂ) 1, 667 1, 672
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§15 Decay of Lucifer

§15 Decay of Lucifer
Tnere are wany swal) plauncts, valled Asteroid, between the or—
bit of Mars and tﬁét of Jupiter. Most of them are smaller
than even ordinary sattellites, and some of them are not
spherical.
Representative one are Ceres, Pallas, Juno, Vesta, Eros,

lcarus and so on. Their masses and radii are tabulated in
TABLE 7.

TABLE 7

(See the right. Specifications of Asteroid.)

More than 1,600 are found. There will be more than fifty
thousand, including the smallest which is now undiscovered.
They will bve the ruins of one more nother planet which was
decayed in the ancient Era. I+ has been called < Lucifer >
by some astronomers. We shall study specifications of that
marvelous planet in this chapter. It is situated on the fif—
th orbit.

We, therefore, call the fifth planet. Bode hurber is 2.8 to
the fifth., That is to says, the mother planet had enjoyed the
orbit of 2.8 Astronomical Unit from the Sun.

The specifications are tabulated on the TABLE 8, along with
the inner planet of Mars and the outer of Jupiter.

TABLE 8
Ma rs Lucifer Jupiter
=1 1.524 2.8 5.203
Mas s 0.108 x 317.904
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§15 Decay Lucifer
As studied in the twelfth chapter, the following Eqn. deter—

mines the mass of terrestrial planet,

= 4.577610g—%— (15—1)

where Z and y are radius which distributes energy itensor to
the inner planet and that one, and what does the euter plan—
et and that, concerned. Would you please read the Eqn. of
(12-9)?

From -insides we shall denote the masses of three_planets

with myn and p. The following Egn. reads

5 +
g = 2:8m % nu (15-2)
m + n
u+ 2.8
y = L, (15-3)
n + p

where

myn and p are mass of Mars, that of Lucifer and that of
Jupiter. u and p are radius of Martjan orbit and that of
Jupiterean one. The reader can find the reason in section
(12-3), (15—2) and (15-3) give the radius of the orbit
at which g—potential of the inner planet and the ocuter are
equal.

We must know mass of Lucifer so that we may determine them
(the radii of orbits). With regards to terrestrial planet,
they become largers Mercury — Venus — Earth, and the final

Mars is smaller than Earth, as indicated in Fig. 49.
Fig. 49
The sizes of terrestrial planets

Accordingly, Lucifer is about equal to Mars or owns about
the same mass as Mars. Therefore,
I~ 2.8
as Jupiter’s mass is about 3,000 times that of Mars, if we
use
0.108
— 220 -



8§15 Decay Lucifer
to Lucifer.
Similarly,

1.524 + 2.8
¥y = 5 = 2.162 (15—4)

as mass of Mars and that of Lucifer are supposed eqgual.
Then, we obtain
X m~ 0.52 (Astronomical Unit) ,

and & i1s also expressed by

27
A~ 3.1 x 107 gr . (15~-5)

On the other hand, total mass of Asteroid are calsoculated as
Z=1.7 x 10%r . (15-6)

That 1s to say)

_*% . X L]

P 5.5 10
Only 0.06 per cent of mass remains when decayed. The other
mass was decayed into Ganna ray and sSo on. 1d7a3§ of energy
woere made free., There was an astounding explosion.
Thirdly, mean density of Asteroids are known

3.5 gr/m’®
which shows that of Lucifer.
In virtue of mathematical formulae ©f spheres

47 21

3.5 x == F= 3.1 % 10" , (15-7)

we fimally derive the radius of,

Ray 6, 000km .
The size of Lucifer was about identical with that of Earth,

— 222 —



(16 — 1)

with G—Kleinean Coil

§ 16 Experimental Results

Imaginary Output Potential

(16—1) Imaginary Output Potential

with G-Kleinean Coil

Firstly we fabricated three phases current source of about

IMHz as shown in the following circuit.

The core of the

center oscllating coil, for instance, owns the size as disp-

layend in the following figure.

B+ 400V (300mA)

&

E._lll

ma{ 450 V.

—dL

iBOk (51.)
4

) 1kVR
) t 322
X X X 3

K“’f; 1)
10k 11 !
SCILY
0.1
10 14
(S0V)

/1

30k (5L)

WVW*::::_qmmng
30k 4L

01/ WIKVR
—ARA

60V N

60 k (2L.)

60k {2L)

Fig. 51

50082 (1L

104 (30

The oscillating coil should be composed of Kleinean Roll

instead of Jolenoid.

The 3 phases current is fed onto 3 spherical condensers of

G—generator upon Fig.13 as, for instance, in the next figure.
The output coil of @) in Fig.18 should also be done of Kile-
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(16 — 1) Imaginary Qutput Potential
with G—Kleinean Coil

inean Ro11.

We secondly measure gravitoelectric output potential of this
c0ol1l with high frequency AC transistorized volt meter, through
the switching device as shown in the succeeding figure.

RMS (Root Mean Sguare) output electric potential in the one
electrical direction differs from another as shown in the foll-
owing pictures.

One example 18 displayed in the next table with exXperimen-

tal specifications. 0
105¢

4] e
10[;i ;
4

G e L

Fig. 52

Fig. 53
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(16 ~1) Imaginary Output Potential with G—Kleinean Coil

; ; o : ' AC Voltmeter
Picture # 24

sw p
O SN'O—‘
Output
Fig. 54
Picture # 25
RMS Output in the one L9V
direction '
another sewitching dire- L6V
ction -
frequency of 8 phases 2 MHz
current
8 phasee current poten- 100V
tial
20 Kleinean Turnse
Output Coil (of vinyl cupper
wire)
BaTiO; Disc diameter of 40 %
Date 4520018 March/ /1974







(16—1) Imaginary Qutput Potential
with G-Kleinean Coil

If we suppose the output potential in the one electrical
direction to be
W1:=x+-Woei
another must be
U, =— ¥, =~z — ¥ ¢,
owing to the conventional electrodynamics. We easily find
the difference of),
V-0 =2(z+¥ Y,
the RMS value of which is thought to be,
VY=2rx,
but, marvelousgly, we can not detect with DC meter.

wt

¥y

We can not but conclude that x is quite particular.
The author suppose this difference must be that between
complex conjugates.
Namely, the former value is the complex conjugate of the
latter as
lerﬁf
We should express the difference to Dbe,
U, -, =z + VU, ' “t—x -, ¢ 19t
=21 Y sinwt,
which is purely imaginary. With reference to the topological

S ) e 9 = + =
Clial at L

ot A AL Waatrmacsr 1 Tad Aca T il B R B o
rMNoviCo LI Adclllcall TUuLlled CULL 1o ULIlibs BUEHZSSL1IUILL
?

<)

guite natural

(16-2) Tachyon Oscillator (Revised)
(Ceased)
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(17—-2) Topological Translation of Msbius Strip into Electronic Circuit

§ 17 Electro — G Induction
(17-1) Increasing Electro-g Induction

In Fig.ld3, we use single toroidal ferrite core, upon which
three divided Kleinean Roll Coils are wound, as in the foll-
owing Fig.57. The upper coil is Opt. coil, electric potential
of which was measured day after day.

We drove three spherical condensers with 2 SC42PP (trans—
istorized ) three phases current of which has the frequency
of about 1.5 MHz. The potential amplitude was 200V. The Opt.
potential increased hour by hour, day after day as g-stress

energy fiows in the get.
That increasing curve is shown in the following Fig.58. In
three months the final potential became 37 volt, compared

with the initial of 2 volt.

- ] ) é
‘ — 40V Fig. 57
- 30V
Fig. 58

20V
10V

2V | 1. Lt

0 308 608 904

(17-2) Topological Translation of Mobius
Strip into Electronic Circuit

Reverse side of MoObius Strip can be expressed by, as it we-

re, imaginary ground in electronic circuit, because of which

that electrical translation is double solenoid.

|

Fig.59
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(17—3) Double Solencid Circuit

(17-3) Double Solenoid Circuit

One of the examples with Double So0lenoid is shown in the
succeeding Fig. which is blocking oscillator with double so-
lenoid. Opt. electric potential is 300V, which is realized
by Tachyon fully stored in space —time.

25 turns double coil is used as spherical condenser, ag it

were.
DCIOV
4 m 4m
\% 500 2 l_iﬁLJ
DC10V —YETE— DC10V
1 i . 1
]' q et b
I
15k DC20mA | | DC20 mA :
T N\ K- .
s DC20mA 1
I
S a
33k 1 DC10vVv ) >4
: DC20mA
1
L
DC—=300V DCOA
DC10V \%
DC20ma ) <

Fig. 60

(17-4) (17-5) (Revised) (Ceased)
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(18—1) Four Vectors about Tachyon

§ 18 Properties of about Tachyon

(18-1) Four Vectors about Tachyon

The square of any four vector of particles forms constant

as
pP— (p° ) =—(me)?, (18~1)
where
Jra— di
dr
and
cp’ =W

which is called energy.

Naturally, we can form

2
Ax2+Ayz+Az2—Tqi-l—gz—:—<p2 (18-2)
to particles, in which ¢ is electric potential., and in analogy
to which we obtain
2 2 ZW_L_— i > .
to super signal particle.
Of course, Ar, Ay and Az are spatial components of vector
potential. We can call ¢ rest potential.
Real current Jjz ig defined by

e dz _
]Zﬁc dT’ (18 4)

which naturally 1leads us to

. *_e_.cdt
Tt dr ’
where dv =\ 1—4% dt .

Namely we obtain .

s
LT
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(18-1) Four Vectors about Tachyon

and also
.2 .2 .2 .
jx iy +J7 5 7t =constant. (18-6)

The principle of four vector is that : the 4 th component is
relativistically variable (. increasing or decreasing ) one, the
constant of which givese the right hand side of formulae Of
this kind.

The constant may easily be found to become

e

in (18—6).
Moreover we alsc derive
SR AR P A G T DL (18—17)

to tachyon (to, for instance, tachy—electron or that proton ).
= te 3
Ji-pt S

can be given ag real like that W is real (energy ) to super

(18-8)

gignal particle, in G.Feinbergé formula.

These are also Lorentz increase of electric potential and
that of chargs.

The word of rest charge is given to e. Finally we shall pr-

ocesd to four vector of acceleration of,

ax2+ay2+a22—at2:const. (18—9)
where
_d*t
at_drz -

We already found -

dt w
dr  mc? (18-10)

because of which we express

2t 1 dWw 1 1 dW
dr? mc¢® dr mc? /L—ﬂz dr
-1 ., (18—11)
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(18—1) Four Vectors about Tachyon
where

_dw
S“dt

is the so-called power (energy flowing rate), which leads us
to
S
melay =——— . (18-12)
N 1—p*
In any relativistic case of four vector constant term in
the right hand eside has been that of 4th (0-th) component.
This conception finally leads us to
S 2

= —— = (18—13)
meiy 1—f°

The 4-th component denotes Lorentz increase of power, wher:

S is rest power (working ).
We shall proceed to the case of Tachyon. From (18— 13) that
notation is easily found to have the form
S 2
—_——) = &%, (18— 14)
mec?y fP—1

by replacing S in the former formula with iS.

a_'L-Z +(1y2 +a22 - (

We have oversighted the most basic physical quantity of

T=(x, y, z, ict) - (18—15)
The reader will easily find :
2t Fyttz?—cttt= 2T, (18—16)

where T is invariant time. This time seems to coincide with
Enatsuean invariant one stated in the former chapter ( the
3rd one ). Especially to Tachyon

P tyttzt -ttt =0T, (18—17)
replacing T with iT.



(18—2) Kinetic Energy of Tachyon

(18-2) Kinetic Energy of Tachyon

Total energy of tachyon is given by the familiar form of,

W= ;Czl :“ﬂ"z (1—512—)%([?:%, in=m),
(18—18)
Which 18 developed by Laurent expansion of,
¥u_[;f[1+%.#+%%+.....]
= pet S et (T e
(18—19)

The first term gives what corresponds with rest energy of
real particle, but super signal particle never enjoys such
state. It is interpreted to be rest one when one Observes
tachyon from moving frame at signal velocity.

The second term of,
2

ne C 3

(=),

2 'V

ie that kinetic energy, which decreases with V at super sig-
nal. The remaining terms are correctione to that kinetic
energy.

Momentum of tachyon owns the form Of,

e L (18—20)
g1
which ie developed into Laurent series such that,
— s C e 3 Lyt _
—ﬂc+42(v)—+8ﬂc(v)—+ , (18—21)

the first term of which,
unc
should be called_<:fundamenta1:momentum of tachyon:>.

The remaining
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(18—3) Periedic Chart of Tachyon

ue e \% 3 G
_,<__) +_'uc<__) e
2 v° 8 4 (18—22)

are correction terms.

(18-3) Periodic Chart of Tachyon

Absolute value of, as it were, rest mass of Tachyon of,

L iul=m, (18—22)
probably takes discrete value. For instance, proton can arrive
super eignal when accelerated by g. It takes certain value of
M which corresponds with that mass on the geroth hyper surf-
ace.

Mass formula of periodic chart of elementary particles ( t-
able 6 ) took the form of,
m=T77.91409/ 2%~ 1—5s (s+1) (MeV) , (18-23)

where 1 is called <intrineic principal quantum number > and

what enjoys analytic continuation of eigen value upon ultra

gpherical harmonics of ( referred to chapter 2),

QnL(Cosﬁ):'SinLﬁ EWJL C:_l(cosﬁ) . (18—24)

A. Z. Dolginov finde that princiva’ ouantum number of #n en-
Joys analvtic continuation upon the other ultra spherical
harmonics of,

{ (chﬁ)L[ d

M, d(sh@

9:(0): )]“’COS<N+1)(0+~%”—), (18 -25)

wheres
M=NZT(N+12 ) (N2+22) o X (N2+ LP),
[ referred to section (2-3) ]
n=1 N , (18—26)
It is quite natural that < intrinsic principal quantum num-

ber > corresponding with (18—26) should be pure imaginary
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(18—3) Periodic Chart of Tachyon

such that
n—=34=127 . (18—-27)

Then, tachyon enjoys different eigen state from that in
periodic chart of real particles in section 13 . We, therefore.
rut

=1 2
in mass formula of ( 18-23).
We easily find that it takes the form of,
m=1T77.91409 iy Z*+1+s (s+1), (18—28)

which reveals that, as it were, rest mass of tachyon is spe-

cified by instrinesic gquantum nunrbers, and is pure imaginary.

The N given by A, Z.Dolginov of (18—25) is real and serial.
Then, we naturally regard Z in (18 -27) as real serial number.
The author, however, propose that super signal proton ( tachy -
proton ) can be labelled by letting it analytically continue
onto 12 i3 (eigen state on the first hyper surface ), and that
all the real particles can be done similarly.

A super signal particle with

Z=12,

and

S:

’

ro—

is present on the first hyper surface (neighbouring hyper
surface ) when we take up (18—-28) as formula of periodic chart
of tachyon. This particle should be called tachy-proton ( the
first hyper surface entity amalytically continued from the
zZeroth hyper surface ; ordinary physical space ).
Then, we finally obtain
m=939.41057 MeV, (18—29)
from mass formula of (18—28).
Proton owns mass Of,
m=938. 256 MeV, (18—30)
than which absolute value of ( 18-29) is a 1ittle larger.

Most of scientists understand that they must not simply
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(18—3) Periedic Chart of Tachyon

conclude imaginary mass Of tachy-—proton to be,
m — 938.256 1  MeV.

They also know how much different it is from m with (18—
29 ), Generally speaking, absolute value of tachyon’s imaginarz
mase 18 a little larger than corresponding real particle on
the zeroth hyper surfacs.

We finally derive the following table by making calculatior:
to the former periodic chart of real particles.

TABLE 14

elgen state real particles tachyons
2 4 2 )7 105.659 186.830 ¢
T 139.578 , .
2 7 K - 134975 174224
% P K K* 19382 5124023
. P 938256 .
12 7 3 ., 939 6F 0 939.410
? i 9 A° 1,115.6 1,134 468§
N P 11804
R 3 1,1925 1,212 0321
b 1,197 3
. & 1,321 .
17 7 3 x 1315 1,328 552
% P9 'R 1,672 1,675 149 ¢

For instance,

of 2 onto the first hyper surface.

§ 19 Time Reversing Oscillator (Revised Ceased’

212 means analytic continuation of eigen state

§ 20 Imaginary Distance (Ceased)
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(21-2) Cross Word Transcendental Number

§ 21 Signal Number

(21-1) Signal Number

Signal velocity is widely known tO De,
¢ =2.997929x 10" e
which happens to be expressed by the transcendental number
of,
2rmlog3 — 2.9978458 ,
the 3 of which seems t0 be planetary number of ear th.

If a particle attaine 99 % of signal velocity ,

V=0.99c¢, (21-3)
Lorentz factor happens to become integer of,
7(0.996):/\[1&(0.19690)2
= 17088815
=17 (21—4)

We shall discuss physical meaning of this characteristic

value of V elsewhere.

(21-2) Cross Word Transcendental Number

Two transcendental number are present
e=2.71828
z=23.14159 }

(e<2nlgd3<a, e~2mlgd3~n=3)

one of which is a 1ittle.smaller, while the other of which a

(21—5)

little larger. These transcendental numbers forme the follo-
wing relation .

e—2nlog3+x —=2.88202 (2rxjog3)

— e+ 2nlog83+7—3.40116 (=x)

et 2nlog3—n —2.54906 (e) (21—6)
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(21~3) Bignal Velocity on Other Planets

Three transcendental numbers in parentheeisee means that nu-
merical valuee on the right hand eide nearly equal reepectively.

Sum of transcendental numbers seems to produce transcendental
ones, because of which we put these into parentheeises.

In recourse to characteristic form of (21—6) we call these
<cross word transcendental number >, which seems to play impo-

rtant rolee when one performe analysie of fundamental physical
relations.

We shall discuse elsewhere.

(21-3) Signal Velocity on Other Planets

As signal number of,
Co=2mlog3x10"° Mg
= 2.9978458 X 10" Mgy,
is nothing but,
=2 mog ( planet number ) X 10” M. (21-7)
that upon Mars ae the 4th planet would be,
Ci=2Mlogd x10" Mgy,
= 3.7828544 X 10” Mg, (21-8)
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(21—3) Signal Velocity on Other Planets

In <S8pecial Relativity > invariant is the signal velocity
throughout entire space-time. but Einsteinean <General Relat-
ivity > maintains that it is variable throughout that space

time.

Namely, it starts from the invariance of,

ds? =%, dx* + %, dxdy + %5 dodz+
Fodrdut - + %4 du®, (21—-9)
where s stands for geodetic, and
u=1u9ct ,
#** being functions depending upon space —time co —ordinate of
(x, y, 2, u).
In Minkowskean space —time blonging to <Special Relativity~>
Finstein defines
Foo =1,
accordingly
ds* = dx*+dy* +dz* —c? dt*, (21-10)
which leads us to that ¢, becomes square Of signal velocity.

If ¢, is a function depending upon space —time co—-ordinate,
cannot gignal number be that of space-time co-ordinate ? Then,
it becomes variable throughout entire space-time. That is to
say, one finds that the formula of (21—8) is general relativist

With reference to (21—7) we obtain the following table, cal-
culating signal velocities from Venus to the 10th planet.

Table 15
planet gignal velocity signal number
Venus 1.8914272 X 10 e 27 log 2
Earth 2.9978458 " 27 log 3
Ma rs 3.7828544 " 2mlog 4
( Lucifer 43917579 " 2Wlog 5 )
Jupiter 4. 8892668 " 27 log 6
Saturn 5.3099072 " 2 log 7
Uranus 56742817 4 27 log 8
Neptune 59956854 4 2mTlog 9
Pluto 6.2831852 " 27 log 10
( The 10th Planet 6.543265 " 27T log 11 )
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§22 Center of Wave

§ 22 Center of Wave

Mass is called <Waviole> which means that it is a particle,
and also wave on the other hand.

Both center of mass and of wave are, therefore, present.

For instance, a swing moves without external force. It has
been interpreted to move by transition of center of mass,
but slip of center of mass and that of wave provoks a motion
Withdut exXternal force.

Real particle ie absorbing and emitting tachyons. One of

% the expressione of microscopic motion is given by imaginary

quantities.

This quantity periodically changes such that,

m=iWsin (wt+a), (22—1)

when center of wave moves, while center of mass similarly

does .
M= psinwt (22—2)
Resultant quantity owns the form of,
v=usimowt+iWsin (wf+a), (22—-3)

root mean square of which becomes
_2 1 .
v ~-77f0 vidt (22—4)
— ™1 2 e 2 0 . s
=4 T [/1 sinwt+2 i pWsinwt sin (wt+a)
—W?sin? (wt+a)]) dt
:%(ungzﬂLichosa) . (22—5)

Taking square root of (22—5), we obtain

__JuZ—W2+z'chma
Yy == 2 )

(0<gpu, O<W)

(22-6)

which reduceg to
2 __ 2
5= /_ﬂz_W, (22—17)
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§22 Center of Wave

when
S
=7
If u<w
(22—7) 1eads us to
2_,2
v =1 WT“ . (22—8)

Inertia becomes pure imaginary, Then, test piece loses wei-
ght, and rests on balancer. Weight namely vanishes when it
enjoye periodic motion with slip of center of mass and wave.

To any value of o we have general solution : putting

W
JL?T__:‘m
(onc)uW (22-9)
(el |
JA+Bi=xz+y1i, (22—-10)
we find :
P—y?=A
zxyy—B}’ (22— 11)
and that
(z*+y?) =A*+B*,
22+ y?=J A"+ B?
xiylt=-——
4

from which parameter Eqn. of
i 2
- JETE t+ 2=, (22—13)

appears. Then,

_ JA*+B%1| Al
- 2

¢

is obtained along with

R JA YBE + Al
- 2

y=+ JA*+B*—| Al '
- 2

(22—14)
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§ 22 Center of Wave
four combinations of sign are poesible .

One finds different solution to

g <—
Ogafz,
and
T 3
—2<a< 27: s
respectively, since
B
e =B
LI (0=B)
==

holds.
For instance, one obtains

———————— 1 { //, o cxra N 2 orrro 9 . 2 rr72
JAYBE = (WY (W) W cos’at | pt—W? |

+1 «/«/(ﬂz“Wz)erﬂszcosza—|u2‘W2 l } ,
in case of,
0 gag—”z— (0<B) .
After some arithmetics the solution will be found in case

of -%-< a<—g7r .
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Concluding Remarks
Concluding Remarks

Just after the revised edition, there was a remarkable dove-
lopement 0f the theory.

We came toO realize Mobius coils and Kleinean coil | We
are publishing the fifth and revieged edition, for one of tThe
reasons of which many Brothers and Sisters had recently req-
uested this title. For the new readere we remark that Levity
Disc of Mr. John Roy Robert Searl ig a realization of <lIn-
verse—G Engine> gtated in the 9th chapter. A little differ-
ence is that it becomes negatively enorgied state with a rotor.
while our< Inverse—G Engine>does with a rotary electric
field. There is no mechanical revolution. Levity Disc was at
such a high imaginary electric potential of Ten trillion i
volt that could have never been realized in the realm of ac-
celerator physics or electrical engineering. The output
power of a thousand billion~ten trillion horse power
could have never been. Even Saturn Rocket of NASA could
have never attained. Even existcnce of inverse gravitation
has a eignificant meaning in Physics. We can find that the
late A . Einstein tacitly predicted. P.AM.Dirac made neg-
atively energiéd state of unoccupied own a characteristic
meaning.

By this title and the deed of Mr. Searl’ s unoccupied state
of positive energy and occupied state of negative
energy also become physically meaningful (See the table #1
in the 9 th chapter). The author expresses a scincere gratitude
to Mr. Lars—Uno Bernhardsson in Sweden for his first inf-
ormation, and does to Mr. William T Sherwood for his latest
information when he called on Mr, Searl, and for his wide intr-
oduction in the scientific realm of U, S.A. He also thanke Mrs.
Alice B. Pomeroy for her international introduction.

In Japan, many members of The Association of Aeronautical
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and Space Sciences, and the Physical Society of Japan, the
readers of <SPACE VEHICLE> did him a favour to appreciatel~
read, for which he thanks very much, and is presenting a seq-
uential reports.

< Mobiug Coil Element > and <Kleinean Bottle> are inherit-
ances of classical topology. They contribute to the new mac-
hines, which is interesting.

On the other hand scientists became to much be interested
in Super Signal Moving Matter since Dr.G.Feinberg presented
Faster—Than—Light Particles of tachyons (ref 73) . We have
used real super signal mass to Super Signal Lorentz Transfo-
rmation in the 6 th chapter which may apprec iately be comparec
with imaginary super signal mass of G.Feinberg’s.

This conception is the sequential of the late A.Einstein’s
but it contains some latent ones, which was indebted to Prof.
Shoji MAEBARA of Department of Pure and Applied Ma thematics,
Tokyo University of Education, who is one of the authorities
of Relativity,

We have called <Anti—atomic Motor> in the first edition
<Inverse Atomic Engine’> in this edition. As explained in the
second edition, anti—particles have positive energy, while
negative energy is inverse state of particles and anti—part-
icles.

Just by these conceptions we surely recognize that negatively
energied state has quite deeper meaning, and that inverse
atomic engine can be realized without dangers of pair annh-
ilation.

After we published the revised edition, the author appeared
on TV, which was supported by youth throughout the country.
He thanks on this section. He als0 expresses nostalgic thanks
to Mr. Takumi SHIBANO (Rei of KOZUMI=Cosmic Ray ) who is
a piloneer of G—field engine. He is also indebted to Mr. Akiha-
ru SHIGEMATSU who gave the strongest support, and to Mr. Sa-
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daaki NISHIDA for his valuable kindness.

He aleo does scincere gratitude to Mr.Masakatsu OKI who
fabricated educational model of Kleinean bottle. This techno-
logy of mold belongs to the most difficult.

Also in the earlier stage, an 0ld person in Kyohto, a youth
in Settsu City and a person in Suita City financially suppor-
ted him, which are recorded in his internal empire of his
heart. He pays a scincere respect to Mr. Hachiroh KUBOTA and
a college teacher in Zama City who continuelly encouraged
him, and to Toghihiko ICHIMURA (physicist), and finally to
Mr. T of electronics company for his fabrication of three phasesc
generator,

Would you understand that the perticles in the 183th chapter
is the simplest classification? Could you think that <Decay
of Lucifer ( the fifth planet)> and Prediction of the Tenth
Planet are magnificent analysis?

The 4th edition states several experimental results, too, by

which the readers will understand physical meaning of Kleinean
Rol1,

The bth edition algo does many experimental results, for whiclk
the author is indebted to the late Kohji TAKAMURA and Mr.W. P.

The last section states Time Reversing Oecillator, which was
fabricated by W.P. and no earth people cwne yet.

The author emphasizes that he thanks Masayuki JINBO and Mik:
NTSHINA for thelr financial support throughout the constructiorn
of G—regearch Laboratory (The right picture shows this labor-
atory ).

Swedish Royal Academy of Science in which Nobel Prize Commi-
ttee 18 present, purchased 14 copies of this title.

Notice . Would you do us a favour to enclose two or more Inte-
rnational Reply Coupons when you communicate G—research Lab-
oratory 7

Yr Just after the Tth edition the author succeeded in the expe-

riment of < Loss of Weight >, which the 8th edition includes.
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The author makes use of Moebius Wound. About a century has

passed since Moebius Strip appeared. Tachyon plays an impor-

tant role, the theory of which was proposed in 1967, and about

20 years have passed. The readers will deeply be impressed at

realization of inverse (anti- ) @ in their long history.

Photo 29
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(A) Mathematics and Physics
where the suffix of the second rank tensor runs like (2 3.
31, 12, 41, 42, 43) . The same notice is asked in the
succeeding parts.

(1—2) Four Dimensional Volume Elements

dr=r'sn’smpdrdbded¥.

( in Buclidean space-time X 0 =r <o, 00 <m)
dt=r’sh’Gsingdrdfded¥

(in Minkowskean space —times 0=<r <oos —oo<f <)

(1—3) Hyper Surface Segment

(3—a) ©Polar co-ordinate
dydzdu=r’sio’ 0 si ¢ cos¥ d0d¢pd¥,
dzdudx=7r"sir’ § si” ¢ sin¥ a0 d¢ea¥,
dudxdy=r'sin’ 0 smpess¢ db ded¥,
dxdydz=r’sin’ f coslsing dfded¥,
(in Huclidean space-—time)

0 —>1it (—oo< b <o) in Minkowskean space-time.
(3—b) Cylindrical co-ordinate.

X =rsintcos?, Z2=19,
y=rsmlsn¥, u=rcosf ,
48,9, =d Sygpr=048,4=0. A8y =1'snb dd¥az,
on a hyper sphere of,
r=a.,

in Euclidean space-time.
6-—>10 (—oo< b <oo) in Minkowskean space - time.
(3—c) Three Dimensional Polar Co-ordinate.
dydzdu=r'sw’pcws¥ dpd¥du,
dzdudx=r s ¢ sw¥ ded¥du,
dudxdy=r’smecsg dpa¥du,

dxdydz =20,

with
x=rsmn@csy¥, Z = TS ,
y = rsn@siny, u=u

(3—d) Polar co-ordinate on a hyper sphere of r=a,
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(A Mathematics and Physics
dSraIf—_—dSrg‘ﬁ:dSr@:Os
d Sggg =7 50" O swp abapd¥ .
(1—4) Four Dimensional Jacobian and
Fransformations among Derivatives.

Four dimensional Jaccbian to polar

o, 0, e, ¥ O, b0, 0. ¥)

::O(XH X, X0, x4 0K ¥, B W

“sin § singeosy, cos 0/ sin posy , oosgp.cosﬁlf , - __ST_L,
r rsin sl sing
sm@smgpsmyf, cos  sin sy , cos@siny o cosq/i ’
T rsinf rsnbsing
sin foosg, cosBoosep /T, —sn@ /rsnl, 0,
cosfl , —smtl /r, 0, 0,
N o<, &, 5, xH . 0(X, ¥» Z» W)
(’9(1‘, 6; ¢a 9/-) o b(r’ 6: §0» q/)
7 sin (ismgpcosw', sin (7smgosm¥/', smﬁoosgo, cos § ™~
/
\/ rsm fsngeos?, roosfsmesn¥, resfeosg, — rsnl )

/

\\ T sin § cospeosy, rsin i cossm¥, —rs1nf}sm¢, 0 )
N rsw sn@sny, rsinfsn@osy, 0, 0 /

Derivatives transform such that ;

P

o

AR
57 | _| 0

(1—58) Surface Segments on Hyper Sphere.
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(A) Mathematics and Physies
d 8,y =d§; =Ad8,,=0, dsp,=2a"smb dbde,
d§y=a'sn’ G sngded¥, dgp=a’swbsnpddd¥,
on a hyper sphere of r=a.

2. Elementary Solutions to Multi—Harmonic
Equation.

(2—A) Bi—-Harmonjc Equation,

@:Arf[fsmw.
o 5° x = roos¥
to + Fd F@=0, with {
aXZ oy_Z y:rsmy/,
(2—B) Tri-Harmonic Equation
¢j=Ar3
. H? .
to L@ = (— +-az + ? y ¢ =0,
0% a3y 0z
with r=x"+y +2,

(2—C) Tetra-Harmonic Equation

(C—-1) which depends upon time .
QDJkZAr4]11r,
. s
10 D4¢Jk:(ﬁz+’2+ 2+az)4§0 =0,
0% 0y oz ou’

along with r=<+y+2+d¢.
(C-2) which is static.
¢* = AR,
o o o4 '
to L¢F=(——+——+ Yo't =0,
o o9yF 0

with R=<+7y +2°,

in all the case of wiich the constant A is normalized
owing to boundary conditions.
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(A) Mathematics and Physics

3. Lorentz Transformarions

(3—A) Four Vector (al, ¥, A%, A
(A—1) Infra Signal :
4 dv .1
’Alzﬁl‘i‘lﬂA‘" /AZ:AZ’ /A3:A3: ’A4:A c A i
V11— (LY Vv 1— (&

Examples are vector potential (A', A%, A%, & =1¢), spin
potential (gol. ¢, gas, go‘). space-time co-ordinate (x', x°.
¥, ®¥=1ict) and derivatives (8,. &,. 0,. 0,) .

(83—B) Electromagnetic Field

H=H

, _ B +AR Lo
Vi—/ Vi—g
B, =E .

, B —pH . B +PE

EAVeeey- S Y ey 5

(A—-2) Super Signal (on the first hyper surface. c<v)

., A TigA re s s s, A —iEA
e e —— A=A, A=A, A = .
Vi1— (&7 vi1i— (&)
(3—C ) Magnetization of | and Electric
Polarization of P.
le:Ix'
/ Iy_'—/jPz 4 Iz_lley
I :—‘—*-——,, Iz: ]
TV =/ vV1i—4g
Plszxs
, B —41, ., B +pI
P oo P, = —,
VAT V1—4
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(A} Mathematics and Physics

(83—D) Kelvinean Temparature 'fz T

1_.
(3—E) Quantity of Heat q =q/1~47.
(3—F) Entropy $ =g.

(3—Q) Impedance,

Inductance : I: = : (L+£—) :
1+ /4 C
Capacitance : —— =" (1 +41L) .,
. Co 1+ S

Resistance : R =R,
where they are defined per unit length of transmission

line. which you will please see (6—2)., 7 being Lorentz
factor of rT= 1

Ji—F

(3—H) Six Angular Momentum

K=K, - |
L M —H,
Vi—# & NS
7, = sl
rS K, v S, K |

by - e

which you will please sese (1-13) .

(3—1) Six Bending Moment
n,=n..

, 0, —pm, , Dy A

RV STV
m =m,

, o, +/4n, ,  m—pn,

Vi MU



_ A) BRI
4. 3 K DB K XK

(% 8 KD
P(x,y, 2)

BOBFEHLEORKP (x, v, 2) »HHAMKC 2 RALITEAQRE,

ds
r ]

grad Q=rot a, a=¢,

BL, T@P2HBCLEOAP (x', y . 2 ) ZOEET, ds= (dx>dy .
dz )
5. M 9 A8 R

B 7 — 7 v Ny T v FRER,

a a (L+1 ~
((1—2%) 1 — 3z dz_LlL—: ) — (0*— 1) JE. (O =0,
z —z

7 —=cosfl,

{cosec? b 660 (sinzﬁ—a%—)%—L(L—f—l) ootzﬁ——[nz—l—L(L+1)J}

X )y 8 =0,
BL ) @, EEAEDREOEFEK. 70, ¢. V) = (f —1—L(L+1))
nmeo, o, ¥, BL, VO4RTREBCERML 2, =2—2 ) » FEZEO
HBEE, Ok2—-27Y v FRE~ENEE (unitary trick) .
L AAEfH#
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(A) Mathematics and Physics
Yi (¢, ¥) Teing spherical harmonice of Legendre's.
Four dimensienal polar co-ordinate of (1—1) 1is used, and
unitary trick of continuing D’Alembertian (O) into Eudidean
space—time (O——4,) is made use of,
Ortho-normald relations are

f;@z (cosfl ) @;(cosﬁ) sin? Hdﬁ:% . nLEEiE)—'l T3 0
where Opr means Kronecker’s delta.

6. Differentiators and Integrators

(& Miller Differentistor

rMig. 32
( See the right leaf, )
de,
eo '——_Cl Rl d_t H

holds if we denote output electric potential and input
with e, and e,, respectively. C, and R, are coupling capa-—
cltor and feedback resister, respectively,

B Miller Integrator

Fig. 33
(See the right leaf. )

o — 1
’ C R

holds 1f we denote output electric potential and input with
€, anG 3, respectively. C, and R are, at this time, feed-—
back capacitor and coupling resister. respectively.

Je at.

7. Laplace Transformation with respect
to Proper Time

@ Laplace Transformation with respect to Proper Time
P(s) = P(r) exp (~s7) dr,
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n:EEFE, L+1<=n,
HEBER: X (0, ¢, ¥ =@, (1) Y, (¢, ¥ of1A%s,
nt= (i),

T~ . 2 _r (n+ 1) 1 ’
fo@m (cosf ) E), (cost9)51r1(9(3.0_2 = T=11 xXoénn .,

6 . M ™| & =

& 7 —#ods B =7-—Hoes
(32 (£33
Cl
R, | L
MW 0 I —O
) A . )i

o
©
=
I
n(D
—
o3
-
1
I
OL

o 0 O —0
77777777 TIITI?
de; 1 |
&@="CR—737 8, =— ClRl_feidt,

T.537 52K H
W 777 xE#H: Pl=[, P(lexp (—s7) AT,

=it L P@=—a (T pig) rd
B F#E#H: PO=—— fr_im (8) exps Tds

BL, TRIEOFRER (X 33) Xid, BER, XBOEIEEL, Pl

OLETOEEHGCR TS,
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(A) Mathematics and Physics
B) Laplace Inversion .

1 J+ico
P(r) = e stds.,
) 27wl Jr—in(S) <P

where t stands for proper time or Enatsusan invariant time
(Ref. 33) . The contour of (B) is taken clock-wilse with
respect to all the poles of P(s) upon complex plane of s.

s . . P
() Various Theorems. Laplace transformation oI e
T
. n n-1_.7 =
dn P(t) DP(8) — P (0) == P (0)
T

Final Value Theorem : P (o0) == ]s_lI{gI sP(s),

Initial Value Theorem ; P (0) :]s_}ig sP(s).

8. Behaviours of State Angular Momentum

(&) Frenker—-Kramers Equation

axK ad
=Q - K 3
it (KXH—-4 X HE) a7

=ad (KXE+94d9xH),

where a, X, 4, I, H and 7 stand for coupling constant of
electromagnetic interaction, axial angular momentum, polar,
electromagnetic field and proper time, respectively.
See the Ref. 38 and the 4 th chapter.

® Landau-SkEIKBE-Frenker-Kramers HEquation

a ) Jai ay
— -+ e . X ] Y¥Y=20,
( 17 +a(H+ 1 7] T ) X ]
a ) ] dz
— i —_— S . X —— s
C a7 +a(H—1E VA 17 ) ] Z=0
where Y=T+ 1P, and Z=1—1P,
I and P being such that I ==X, and P=ag,

respectively. 4 is damping factor (04, V). See The
4 th chapter.

9. Four Dimensional Vector Analysis

() PFour Dimensional Rotation (K, —149) =Rot A,
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where A means four veetor and Rot is defined by
Rot A=0, A, — 0, A; (Six components)
as six vector, Which splits into a pair of vectors on the
zeroth hyper surface (Ordinary Physical Space) .
B) Four Dimensional Divergence
DivA=0 A =0 A +0,4 + 06,4 +0, A",
© PFour Dimensional Green’s Formula
JffpivAadr=Jf A'aF +ffy A"dF + ffT A’ aF + fff ' aF,
where dF= (dydzdu, dzdudx, dudxdy, dxdydz ) (hyper sur-
face segment )
and dt=dxdydzdu (u=x'=ict) .

O Four Dimensional Stokes’es Formila
JfRot A - das=¢ A -+ ds,

wheXe ds = (Xma d—}g’ d-XS) d.X4) ’
¢ being a four dimensionally closed curve .

B Vector Product and Scalar Product
(B—1) Vector Product
x XxP=%xP —x*P (six components) ,

which is six angular momentum, X= (x, &, %, ¥)
and P being space—time co-ordinate and four momentum,
respectively .

(E—2) Scalar Product
AP=AP + AP +A P+ AP,
in which A denotes four vector potential .

10. Maxwellean Equation

(10—1) Relativistic Representation

3, F" (x) =4nT, 6, " (x) =0,
where F'* stands for electromagnetic tensor, namely
H= (F,,, F,» F,) iE= (F,, F,, F,) .
asterisk denotes the dual of,
*pik _ gl P

2' mn ?
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(A) Mathematics and Physics
g being Eddington’s perifectly skew symmetric tensor of
the 4th rank, and I=«(I1, 1, T, )
standing for four current.
(10—-2) BSolution tc magnetic dipole or electric.
P 2 21k

@ Er:?( 3 + 2 yosp expl (wt—KkKr) ,
Ew:_?( r13 H irl;C _ li ysmg expl (wt —Kr ),
H, = 12@ ( ;2 + irk ) sm@ expi (wt —kr) ,
H,=H, =T, =0, kzzwzc‘j“‘, F=x*+3 +2°,

when electric dipole of p exp (i1wt) ,
is present at the origin, orineting in Z—-direction.

(s) HT:I—n—, i + lek yecos@ expl (wt—-kr) ,
N o T \
m 1 ik X
= _ XD 3 wt — 3
H, ﬂ(r3+ = r)smgoepl( kr)
1wy 1 ik ,
e shn@ expi (wt — :
» (Iz + ) sng Pi ( kr)
B, =5 =H =0,

when magnetic dipole of m exXxpiwt
is present at the origin., orienting in Z-direction (in whi-
ch we replace E—H, and H->—HE., ).

11. Spin Wave Equation in Relativistic Form

0,0 ) =477T" ), 8, ™ (x) =0,
where m® is the Jk component of angular momentum density
on the p—th hyper surface and T? stands for energy tensor.
Asterisk denotes the dual of,

J kmn
»x jkp € P

=57

12. Self Inductance and Mutual

With respect to P and r in Fig. 9, mutual inductance bclwecen
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vertical infinite line and a torus coll is determined by

L,=47n (R—vVE - 1) ,

as calculated in appendix 8, while self inductance by

L,=4zn’ (R—vF —1") (Ref. 59) .

13. Three Dimensional Vector Analysis
( for beginners)

(13—A) Scalar Product of Three Dimensional Vector Analysis
Scalar product of a pair of tThree dimensional vectors of,
A= (A", A%, A and  B= (B, B*, B
is: A+B=AB +A'F + B = |A||B| s,
(A= (A" ¥4 (A%F+ (A%Y, and |B|° = @¢%+ &P+ (B,
A and B forming the angle of ¢.
(13—-B) Vector product AXB (A crossB) is determined by,
AxB= (AB -AF, &8 -A'F, A'8 —A*B')=|A||B|smne.
(13—-C) Divergence

. oa' oA® oA
div A= e + oy j— o ,‘__o.A:
. ~ 0 (0] 0
0= . ’ s b = .
along with ( g Gy o )

(13~D) Gradient

_ 99 09 09
grad§0— ( aX ’ 6y ’ C;Z ) .

(13—1F) Rotation
oA oa?  9A' oA* oAl aal

ot A= ( oy oz ' 9z  Bx ' 0x 0y ) =0XA (0crossA)
(13-F) Matual Operations rot (grad ¢ ) =0,
div (rotA) =0, div (grad ¢) =4d¢,

rot (rot A) =grad (divA) — 4 A,

diveg A=¢@ div A+ A - grad ¢,

rot ¢ A=¢@rot A— A grad ¢,

div (AXB) =B « rot A—A * r0t B,

rot (AXB) =AdivB—-BdivA+ (B+*0)A—(A+0)B.
(13—G) Green’s Theorem

JJ,ddvadaxdydz=4f A-dS,
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where V denotes the domain inside a closed surface of S,
and dS= (dy dz, dz dx, dxdy) .

That four dimensional extension was stated in (9—-C) .
(13—H) Stokes’es Theorem

J,A-ds=Jf, rot A - 48

where C stands for & closed curve on the zeroth hyper sur-
face (Ordinary Physical Space), and S for that correspo-—
nding surface. This formula is applied to the third set of
Mexwellean Hquation and To the first and the third of tot—
al angular momentum wave equation of (1-3) .

(A—2) Calculation of a Seqular
Equation

We shall rewrite the seqular equation of the 7th chapter,
defining the matrix as E-m7y
and putting the terms with the form of (a+Db¥
diagonally and counter dictionary wise by

row wise : (3—1, 22, 153, 4—>4, 55, 6—5)
and column wise : (6—1, 5—2, 4—3, 194, 2->5, 3-56)
guch That
0, a(Od—-d), b(O—-4a), a(d—-c), b(d—c), (a+b) (c+d)
a(O-4), 0, c(Og—-4a), a(d-b), (a+c)(b+d), c(Og-Db)
b(O-4d), c(d—4d), 0, (a+c)(b+d), b(g—a), c(Od—a)
a(Od—-c), a(d-v)s (a+d)(b+c), 0, d(g—c), d(O-Db)
| o(d—-c), (b+d) (c+a), b(g—a), d(d—-c), 0, Ad(O—a)
(c+ad) Ca+b), c(O-b), c(d—a), d(O-b), d(0-a), 0
and the coefficient of 7 of,
(a+b)? be, ca, bd, da, 0
be, (c+a)’, ab, cd, 0, da
ca, ab, (b+c)®), 0, cd, 4b
ba, cd, 0, (d+a)?® ab, ca
da, 0, cd, ab, (b+d), be
0, da, ba, ca, be, (c+d)?
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We apparently find det (& —m7) to be symmetrical Wwith res—
pect to a, b, ¢ and 4. At first we easily find det f=det (¢
—m7) to have the factor of & : because

|parts which are proportional to 4.

7= a’ +2da+da’, ab, ca
ab, © +2bd+ad, Do
ca, be, c+4+2ca+ad

the latter three columns of which are proportional to :

rank 1+ what are proportional to d, and are a:b:c except

what are proportional to d. We can let the two columms of

the three be proportional to 4.

The coefficient of 1 of £ is given by,

/l(a+b)b+ad, (a+Db)b+bd, (u+b)c+(a+b)d\

|

]

(c+ad)a+da, (c+al)b+(c+add, (ct+a)c+cd

= (b+c)a+(Db+ec)d, (b+c)b+bd, (b+c)le+cd

,iwhat are proportional to d. S

The latter three columns of which are a:b:c except what

are proportional to d. Thus, the sixth column and the fifth
in both of ¢ and 7 can be let proportional to d if we Subt—
rat, for instance, the fourth columm multiplied by c¢/a from
-the fifth. We finally find det# to be proportional to &
since the denominator has not what 4 concerns. We shall fur-—
ther proceed to the sequential discussion., We next put the
representative D of the factor concerned to be zerc (at this
time D=4) . det & owns the factor of I¥ if we find that rank
To be smaller by k than the formal order (at this time, 6) .
In the abcve example, the rank is not greater than four.
det/ must own the factor of I'* =a®. It also has the factor
of a’1’¢’d® from the symmetry with respect to a, D, ¢ and 4.
We shall thirdly how many D’Alembertians are contained. & be—
comes
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0, —da, —bd, —ca, —bc, —(a+b)®
—da, 0, —cd, —ab, —(c+a)*, —be
£, | —od, —cd, 0, ~(b+c), —ab, —ca
—ca, —-ab, —(d+a)*, 0, —cd, —db
—-ca, —(b+d)*, —ba, —cd, 0, —da
—(c+d), -be, —ca, —db, —da, 0
although 7 is rather invariant, where the relation of
a+b=0—-(c+d) == (c+4d)
is used to the toppest of the last column of &. This matrix
resembles 7 very well. From this symmetry ¢ 1s almost iden-
tical with 7 if we periorm

&m(A B)Z}Lm%<A—B,A+B>
D

\ C 2 C—D, C+D
1, .  [A=B—(C=D), A+B—(C+D)\
— () U_BL;L
2 \A—B+C-D, A+B+C+D ),

with the 2 X2 matrix of A, B, C and D.

If we arrange such that (the first column) — (the sixth col-
um ) — (the first column),

and (the first column) 4+ (the sixth column ) -» ( the sixth
column) ,

and, futhermore, @ - B)—>2 and @)+ G- (5,

and (the first row) — (the sixth row) — (the first row) ,

and (the first row) + ( the sixth row) — (the sixth row) ,

we obtain

—(a+b)—(bec—-2ad) 0
~2(ac—bd)—(c+d)?
£ =
R (a+d) +(b+c)+2(ab+cd)
+2(ca+bd)
—(a+b)—2(bec—da) 0
—2(ca—-Dbd)—(c+d)?
77:
0 —(a4+d)Y+(b+c)¥—-2(ab+cd)
—2(ca+bd) ’
where we put d=g—-(a+b+c) =—(a+b+cC)

t0o The first, the second and the third row (column) , deriving
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—2 (a+D)?, —2 (a+b)(c+a), —2 (a+b)(b+d)

—2 (c+a)a+D), —2 (c+a)?, —2 (c+a)b+oc) 0
—2 (b+ce)@+Db), —2 (b+eXc+a), —2 (b+ce)?

E=n1=

0 >
the rank of which is 1. We also have (the fourth column) =0,
in virtue of a+b+c4+ada=g=20, when wWe make (the 4 th
column ) + (the 5th colum ) + (the sixth colum) — (the 4 th
column.) . The rank of the part € is not greater than a (=2).

Then, rank=3, TO Oo=2o0,
which shows that det/ owns the factor of O° . We finally
find that there is the factor of, a’©b’ c*d?,

which is a homogeneous of the eleventh order. The remaining
factor is a homogeneous of the first order. This is noting
but a+b+c+d=0. Now we finally put

det g=a’v c?a’0' f ),
f(m) of which we shall determine. When we put a=b=c=d=1,
then we derive

det f (a=Db=c=d=1)=(1*) 4. fw ,

0, 3, 3, 3, 3, 4
/3,0,3,3,4,3\\
. 3, 3, 0, 4, 3, 3
\3,3,4,0,3,3
\ 3, 45 3, 3, 0, 3
\4, 3, 3, 3, 3, 0
4, 1, 1, 1, 1, 0\
1, 4, 1, 1, 0, 1
1, 1, 4, 0, 1, 1
1, 1, 0, 4, 1, 1
1
4

1, 0, 1, 1, 4,
0, 1, 1, 1, 1,

-4m, 3—m, 3—m, 3—m, 3—m, 4
3'—]11, —41’[1, 3"'II1, 3-'Hl, 4 3'_m
3_m) 3_m, ’_4m7 4 ] 3—m5 3—'m
det F=
s 3—m, 3—mnm, 4 , —4m, 3—m, 3—m
B—m, 4 [} 3-—H1, B—m, —4m, 3_‘m
4 ] B_m) 3-—1[1, 3-—Hl, 3"‘111, _‘4m
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-4 (m+1), 0, 0, 3—m, 3—m, 4
0, —4(m+1), 0, 3—m, 4, 3 —m
0, 0, —4(m+1), 4, 3—m, 3—m
0, 0, 4 (m+1), —4m, 3—m, 3 —mn
0, 4(m+1), 0, 3—m, —4m, 3—m
4 (m+1), 0, 0, 3—m, 3-—m, —4m

—4 (m+1), 0, 0 )
0, —4 (m+1), O <
‘ 0, 0, —4 (m+1)
det f=
4 (1-m), 2 (3—m), 2 (3—m
0 2 @3-m, 4 1-m, 2 (3—m)
- 2@3-m, 2 B-m, 4 (1-mw
1, 0, 0
0, 1, 0 >
0, 0, 1

=(—4 (m+1)J°

O 0, —2 (1+m), 2 (3-m)
2 (3—m), 2 (1+m), 4 (1—m)

1, 0, 0
0, 1, 0 X
0, 0, 1
=—4 (m+1)°
—2 (1+m), 0, 2 (3—m)
0 0, =2 (14+m), 2 (3—m)
0, 0, 16—8m

—— P (m+1)*(—2(m+1))°8 (2—m)
= (— D= (=1)(m+1>%+ 4+ 22«8 (m—2)
=4 8 (m+1)%(m—-2),

We lastly obtain fm)=28 (m+1)° (m—2),
which leads us to

det f=8 (m+1)° (m—2) (abecd)® O
This result is made use of in the 4th chapter.
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(A—3) Circulation of Spin Density
Line of Force

Fig. 26

(See the right leaf. )

When momentum segment Pd(2) 1is concentrated at the origin
such that Ji PO(z) dz=P

along vertical infinite line of Z-axis, we shall determine
the components of spin density at (r, 0, R) .

From (1-19) We Obtain

Pdsxr—m[o, rPo(z)d.z 0], (A=3-1)
and Irl — [ +(R—z)]2,
which leads us to K, =X, =0,
and = rPi@A T

Ky=] ) = £ T (A-3-2)

3
(r*+(R-2z))z (FP+R)?

there being a circulation of spin density line of force
around momentum flux.
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(A-3) 2YEY UyTBEREOD

El&

B

(#m26H)

i >(r,O,R)
/A7

P 8(x)dz

4, PETBEERC b, AHREH PO @) dg 2, EBES L,
S Po@dz=P
L ARCEIKGECEF LT (0<Tr, 0<KR) LoaevyBEORSERD
5o (1—19) Xap,
PdsXr= (0, rPelé@dz, 0) (A—3—1)
&
ITP=(r*+ (R—z)% 3}’ c30oT,
K, =X, =0,

ISR

@ rPzo@dz . rP
)KY_-[OO 2 2 o 2 2,3’ (A—3-2)
(r*"+ (R—2)" ) (r"+R%) 2

o Jw

Eh o, EBBEOEORBACA Yy EEHNBOBELIHESL (E25K)
(Z25KZBR)

BL., (A—3—2) Ti. [ Tg) @ dz="7(0)sBRE A Lt
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Fig., 25
(3See the right leaf. )

We have used & Ffamous relation of,
J fT@o@az==<(
in (A—3-2),

(A—4 ) Determination of Reduced Mass

If masses of m cnd m, are present at the one point of
- 1 2 3 4
=0 %, X, X))

and another of,

_}E;:(}éy }ia }{2, X:) s (A_4_1)
the center of m@is is_gxpressed by
mx, +mx,
= e : A—4—2
thy + 11, ‘ )

in Minkowskean space-time. Four dimensional angular momentum
around the center of mass is given by,

d X,
ar

ax .
M— (3?1 - @;m1 —d?l*—}- (7"‘?2) (>ymz

_omm, N
=Ty KRR G R R

e (6L
=¥ (?1 ——?2) X —i?‘ (;{ —YZ) . (A—4-—3)

in which ¢ and u# stand for proper time to the center of mass
and a new reduced mass of,

i, 2,
M= (A—4—14)
My + 1,
&0 means four dimensional vector product, for instance, of,
S . .2 .3 3 _2 3 _1 1.3 12 2.1  _4 1 1_4
XX =% —Kxg, (X5-X%5, 5, L -4x5, §x-x1x,
4 4 4

2 4 _2 3 3
X% -%K, KK %K)
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A-4) BMEHEARBORE

IyravAFRERNO 2 A

_ 1 2 3 4
X, = (x,, x|+ X,» X/)
3

—>

CHKm X0m, #E 5 & Thid, HoELd,

— —
. m X, +m, X,

[~

== m1+m2 » (A_4_2)
T3, BUOORBEO4RTHAESE I,
= ax, - - dx,
M= (X, =X) ®m, —+ (X, =X) @m —
. m, m, — — d. — —
=T, +m, (X, —X%X,) R 7 (X, =X, ),
— - a — —
=4 (X =X ) B (X, =X, (A—4—3)

T3, UBFLWLWEETTA, Ehit.
=1l (A—4—14)
M= m,+m, '
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(A—5) Generation of Rotating
Electric Field

Three spherical condensers are Situated at the tops of an
equilateral triangle in Fig. 10.

Fig. 30

(See the right leaf, )

We shall again illustrate them in Fig. 30 and charge and
discharge them with three phases current of ¥ sinQr, ¥ sm(Qr

+%7r) and yfosm (Qr +%7E) . Then, electric potentials across
A, B;B, C and C, A are expressed by

¥, =¥, (sin (QT +47) —s0Q7 )
— ; T T
= 2% cs (QT +5) sy
=VI¥ s QT +5) ,
WCB:W6 (s (QT +%7r) —smm (T +%—7r)],
=3 ¥,os (QT +7) ,
and V,.=¥ (snQr —sn (Q7 +-§-7z)]

=—3 ¥ s (Q1 +%—7z) .
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W BERUWES
THRHEEETT, M. QR4RTONMMT, I,

2

2 5 3 3 2 3 _1 1 _3 1 _2 1 _2
X (XX, =(xX] X, =X X,» X, X, =X, X« X, X, —X, X/

4 1 4 1 4 2 ) 2 4 ] 4 _ 3
X, X, —X, X+ X, X,—X, Xy X X,—X, X})

&flbi‘jho

(A-5) H&ESH O fl &

Z10M o3 EoBBaryFrya, E=AROIHoBA e tBLTES,
(FE 30D

|

HhE®30M oMERL, £y 7y »CSHRROSMY, snwr, ¥, sin
<m+:§-n> RU ¥, sn (0T +47) ¢ %MESBHL. A, BiB. C &
UCC, AMoBAIZER,

. 2 . _ R, T
¥, =¥, (sb (T +—7) —sinar ] =2V s (wT+3) sin

=T Vyos (0T +2)
KVCBZWO ( sin (wr+§~n) —sin (wr+%7r)]=x/3—¥fooos (wT+7)
Vv =V, (sinwt—sin (©T —i——4—n')]_—_—\/‘3‘ ¥, cos (Q)'z‘+._2_7r) ,
AC 3 3
(A—5—1)
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If a side of the equilateral triangle is ¢, we derive elec-
tric fields o7,

V3 Y,

Y
Boy =70 (QT +7) ,
- V3 ¥,
Bog =7 (AT +7) ,
and B :—iy—JO—COS(Qr+£7r) (A—5-2)
AC L{ 3 ]

along the sides. K, 6 is obtained by making use of a relation
of, s (QT +7T) =—cosQT,
Transforming (A —5—2) into star diagram with star—delte

transformation (Ref. 61), we have Fig. 31 (Ref. 62) ,

Fig. 31

(See the right leaf. )

owlng To which we finally obtain

|Egol B, | Byl ¥
1Bl = K| = 5, | = = LEL. 'SHRNL 1 SR

) £ 3 ‘
Vv v fo

K -—f‘l‘ms(erE—) =—"00s (QT +7)
AT/ 37 EB_ l ’
and EC:—Z—O—cos(Qr-i—%n) :
Putting Qt +% to be 0. we find
v
no— 0 j AR 0 2
B, =——cosl, By = s (§+47),

and

v
EC:‘Z—O—COS(O-F‘%TE) .
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tVEF, EEARO-LOEX 2 LEHLETHIE, K4

VIY, VIV

VA
=8 (OT + ) Ecaz—*—[ Lcos (WT 4 7)
v3V¥, 5
EAG-—_——“Z—‘OOS (wt + ?7[) . (A—5—2)

DEEH, FAcBOTHONET. E, OFRRE, (A—5—1)556( A
5 — 2 )"C%bﬁb(_’ cos (CUT+ T ) = — C%Q)T@E'g'{%%ﬁﬂ\‘-i Lf\:o lﬁ:h%
As T A HH (MO 1) CHR LT ASNICERK Lt L, 831 Mok

e xF (X622 ).,

2
(K318
E, .
EBA AS
v EA 0
<= - —_———
]
K, ! E,
£,
]
|
|
_ _ _ Egl  EGL HEL ¥
B =B, = B =—R—=—B=—2 =2 <3ou,
EA:Z°—cos(wr+—7—r-). EBzzo—cos(coT#—n').
l 3 ¢
E(,::—g;—ocos(a)'r—l——n)
TH, 0T+ =0 rREET L.
_ ¥, Vo 2 14 4
E,=—)" o0, E,= ws (8 +=7) . Ec:—;~oos(0+3—1t)
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The components of electric field of E, and E are

)

0

v 4 ‘4 ,
K= Owﬂ%0+z wwb+%ﬂ)m%n+*Lm(0+%n)

L v L
3
4 0
XCOSB T = 2l COS@:
'4 '3 v
s 0 9 s (42 2 o 4
B&—”Z‘“56$“0+'5 ab(ﬁﬁ—sn)sm37r+ 7 aB(bﬁ-Bﬁ)
3¢, .
= 7y sin @ | (A-5-3)
if we take x— 0 —y axises as in Fig. 31.
Thus b= (5, E)
Torms the angle 0f ¢ with x—axls such that :
@zﬂrmﬂnézﬁzkmmm1Gwﬁ)zzbzwﬂﬂ+%. (A—-5-—4)

which shows that elictric field rotates.
The amplitude oX the field is given by

Y , ; 3¥
Bl =V + B =—-/cof § +sn” o=

0

2, 7

(A—6) Gyrational Effect of Equation
of Gyro

Egquation of gyro
( for instance, SEIKE-Kramers Equation (the 4th chapter) )

enjoys gyrational effect when we g0 over to a new co—-ordina—
te by

y' =ay, (A—-6—1)
iv a 1s a function ol proper time of T, where y, y’ and «
are coli.-m vectors and a matrix with three rows and as many
columns.
Inverse transiormation of (A—6-—1) gives

y=d' ey =gy, (A—6—2)
which leads us to

dy _ 4ag , . dy’ .

ety VA 37 (A—6—-3)
1f we differentiate (A —6 —2) . We next obtain
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>
a~y ay , dy’ ay a ,
f— o —1f o ac . - a' B QA - )
ar « art yoo+ I art ( dr + d ar )y
—6—05)
. dy/ . i dy (A
13 ar 1s related to a1 by,
dy’ dy
=a -« =, A-6—4
dart arc ( 6 )
owing to (A-6-—3) . a s« pg=1
holds # is inverse of a. We thirdly derive
d dy
o ( —— Q.- —— A —6—6
(dr + o >y (A—6—6)

Asterisk shows the differentiation with respect 1O the new
co-ordinate such that

ax 4 .. 34 (A-6-17)

arT ar ar
Inverse of the transformation matrix of (4—9) is given by,

wsQ7T, —sQT, 0
F=|smQt, wsQT, 0
0, 0, 1 )

which leads us to

gt = ddT + 3 x, (A—6—8)
where &_)):(O, 0, Q) .
With respect to a of (10-12) we further obtain

gf — ddr F WX, (A—6—9)
where D= (- Qsmwt, QswT, W) , (A—6—10)

which is the reason why the solution became rather complic-—
ated when we solve Kramers Equation to spherically polariz-
ed electromagnetic field.

(A—7) Probability of Statistical
Thermodynamics

Taking the angles of a, 4 and ¥ as in Fig. 3 and putting

_ —amd (IXK)
C
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The measure along p axis issw¥ d¥% da and the measure arou—
nd that axis d/. Putting unit vector in the | direction to
ve |. that in the P to be P and that in the p to be p, where
| =X and P=—ag,
we find
cosq, —sind, 0\ cosgf 0, -—st/

(1, P, p) = \sma, cosd , )K » 1, /
0, sm’, 0, cos¥

s, _Sm"/j’ 0 Bypr By Ay
X | smf, cosf, O>:<a21’ Bogr B3
0, 0. 1/ 10 Byp g3/, (A—T7-—2)
which leads us to
cos ¢ =a,, =cos acos Feos¥ —sin asin &
Cos (P == 8,, = —si asmﬂcos¥f+cosamsﬂ,
if magnetic field forms the angle ¢ with | and electric @
with P. Thus, we have & Hamiltonian of,
{ = (I [|H] cosacosz — [P|E|smasing) cos¥ + (|1 |[H| s Asin S —
|PIE|cosacosf) | /7,
Where 1t 1s given in Irecourse to (3 —13). The probability
oY this dynamical system in the interval of (¥, ¥+a¥ ) is
determined by,

ray =sm¥ ds‘il’j"o’d/q:da exp L (|1 [IH| cosqcos s — |P||E | sinasin
— IPlElswasng) cos — (] | [|H| swasng — |P||E | cosq
xcosl) ] /KTT-e-JJ;smiV dqfi:da f; dg expl( ” ]
(A—7-4¢)
If we put

2eosqoosf=cos (A + fF) +oos (a— )

=cosu +cosV,
2smasinf=-—cos (a+ ) +oos (a— F)

= eosuTeos v
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Fig. 34

(See the right leaf.)

we further obtain
T T . _ T T
J daj apt (a, #) —J_nduj_ndvg (u, v)
da dﬂ:%du av.
We namely have

quf':%smqf a¥ JLZ au JLZ av

% ox (AHL T 4+ I PHE DCeos¥ + 1) cosu + (JH] | || = [P E|)(cos¥ — 1) cosv]
P TKT

. T .7 ¥ L 7 ]

flz-Josmqfdyfj_ndu J_av exp KT

while ST exp (awsu) du=2nJ, (1a)=27l,@,  (A=7-6)

where J,(2) and I,(3 stand for Bessel function of the lowest
order and modified Bessel, respectively.
In virtue of (A—7 —6) we derive

am’ i1l 1iH] , 1 |PIIE] (cos¥ — 1)
B sin{/ dWJOE_—HKTT (COSSP+1)]J0[ °T7T ]
— 2 . . >
47 i (HI 1 |P|E] (cos? — 1) ,
_-—2_',0 0[——KTT (cos¥ +1) 37, ( KTy s a¥
| HTTH] IPIIEj(z —1)
B az J, (—ry (z+1)JI,( T T J
T HHIHNGE+D [PIHEI(z—1) ’
Jﬁle _Lo[ T T ]Io[ XT7 )
(A—7-7)
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(& FeERUMBEE
(F 34K

F£34X EE2HELT,
T /4 T T
I da-j'o ift (a, B =f_ du f dvg . v,
da dﬂ:—%—du av.
. 1 . T T
PdSUIEsmqf d.WJ;n du f_ﬂ av
wpCHLIT+ P {ED €os¥ +1) cosu + ([H}TI — 1P {E) €os¥ —1) oosv )

TkT
. 1 T 7T [ ” J
?—?‘-fomniffdw_[nduf_ndvexpx TET
Linh, —7,
[ exp(amsu) du=27nd, (ia) =271, @) (A—T—6)
_ﬂ

ThoT, JyREVT | @ RBEROReVHEBEVERH N+ v EETHS,
¥ -T.,

7 i1l H . 1P (cos? — 1)
5 sin'a ¥ J, [————kTT (cos¥ +1)) Jy C 7T ]
T 4w m i|HIIT] o
5 foJo[_-—#—kTr —(MQ’+1)]JOF P 1a¥ sm ¥
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which Jleads us to
( the mean of oos¥ ]

:J'ZcosgfsmeO[——*lilé;’i (cos¥ + 1) 3 I, ( IPHEII;TCO;W-“ }ay
a | 1iI1H] |PILE| (cos¥ — 1)

Jsw¥ ot a¥.

(A—7-8)
Taking r to be unity to the system of internal motion, we
finally £ind

+J L gy (cos¥ + 1)) T, ( 7T

=J L (a @¥+ DT, (b ¥ — 1)) sm¥est a¥'+ 7 I, (a (os¥ +

D)L, (b (cos¥ — 1))sm¥ a¥, (A-7-9)
) . | 1]IH] . |PIE]
—_ —— 1 -
in which a & T an D T .
Integrating (A—7—6) tTerms by terms with
Xu
e :S e 3
XPX n==0 Il!
and in recourse to
0,;,n:0dad
T p
J cos u du= n 1a
0 ng (=) 7m;n:even,
\(7*) 2
we obtain
1 2(a? +1%) 32+ +al )
Can{gr =~ e —
- 02 4 2 2 L2y g 2.2 2 2 2+‘22+ 2.2
1+43'b L fa bs)' 2a’b | (a b)[(a7'o) 6a” 1) .

(A=7-=10)

convergence radii of |a+Db| and |a—D]| Dbelng 2~ 4.
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(A—8) Calculation of Mutual
Inductance

Fig. 24

(See the right leaf, )

Mutual inductance L between vertical infinite line and a
torus coll is determined by
——;—-7ﬂ;:u~éﬂg-%%—-aF, (A—8—2)
where the circumference orf torus coil is expressed by,

(x—R)*+y =r*, (A—8—1)
to R and r in Fig. 9 and taking vertical infinite line to
be y-axis (in Fig. 24)
(A—8—2) 1s nothing but Faraday’s induction law in which
the interval F of integrand is inside the circle of (A — 8 —
1) with that circumference. (A —8—2) leads to

T ) dxdy

O_L A Fad LS
_ 502 ) 61: JJF X . (A'—S"d)

We must perform the integral of,
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A) HERUYIES
(A=8) MEHA &7 2203 E

(FF243) y

: \_

(x—R)Z+yi=r?

Ti
5¢cX

H= yZis/rz——(X/—R)7

R—r<x<R+4r
ﬂ@%ﬁﬁ&r—7x34wﬁ@w£4zﬁpﬁxxLu IR o< REV
r&%é&,ﬁﬁﬁﬁﬁ%yﬂkbf,P7X:4W®H%%ﬁﬁﬁ

(X~R)? +yt=r? (A—8—1)
TRTE (B24) ,
L 0i
W—“g'"yg— ﬂpat arF (A—8—2)

@&6°@L%nu775f@%§%ﬁ&of,@Eﬁ@%ﬂFm.H(A—s
— 1) ONBEOCAELETH B,
T dXdy
— . —8—3
— &tﬂ (A—8—13)
EDhb, Bo
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aer /7f — (R—x)°
R-r X
which leads us to

I

dx, (A—8—14)

RETHEL \/rz = (X—R)2

I=—1im ax
€50 R-r+€ 1 X
_m}_@ VI —(x—-R)’ dx
2 Yo x ’

c, representing a contour in Fig. 23.

Fig. 23

(See the right leaf. )

1. ..V (x=RF-1 . (R—xF 17

:?[—l@beem X S lg)lﬂﬂ—*o X axl.

xpanding the first term and taking the branch into consi-
derstion,

V (R=x¥ -7
X

:%—er¢(1n-§+» ------ ) dx + 19 dx ]
271 i R v (R—%F -7
— — e ol 1 )
2 [ Znig)(l X ez smet) 2mwix ax)

— 330 —



BE R U Rt

R Jr2— (R—X)?2

I:‘IR—I X d'X (A“8—4)

MAEETHS,

Riraei /1l — (x—R) 2

T=1im . . ax
g “Rr+€i X
1 . Jri—(x—R)?
= = ax
2 Cl X
ThoT, ¢, FE23ROTFMETH 5,
(F23ED

ST R 2 _ N R

:L(——l '—\‘/"(X 150 —‘—‘dX—i-ig) \/(R X) —r ax)

3 } % fe=€—s00 X | % (==E~>0

M IHA B EE L TEB L,

1 R BV S S
=—-(- e s yay +1¢ dx)

5 C i (1 - 3 P -

o .9 9

27Ti 1 . R Ca v (R—x%x) —T

e —— [ d_
> C 2nigM1 X+— yax-+i® 5l X

> v OHBEHEN L
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which finally reduces to

=Ti(1(-R)+ivVR-r* J=n(R-vVF-1*). (A—8—5)
Comparing (A—8-3) With the first side of (A—8—2) and
taking the factor 10 when We‘express magnetic field in C. G.
S. (gauss), we find

L=47 (R—V R —1") , (A—8—6)

which reduces to ,
2nrx
=~ R (em) (A-8—-17)

when r<R.

(A—9) Equilibrium Equation of Four
Dimensional Stress Tensor

There are four dimensional stress components of !, %2, ¢
and ' upon infinitesimal hyper surface element of
dFf =dx dy dz.
We have known that
f''=(x component of internal force upon dF*),
= (y component of internal force upon dF') ,
"= (z component of internal force upon dF*) ,
Y= (t component of internal force upon df‘) .
dF'=dxdydz, _
is cailed hyper surface, but ig essentially a so0lid ele-
ment as indicated in the sixXth chapter. On the other hand,
volumetric force owns four components such that
F=(t' % £, ) .
Equilibrium of
f'dr=1f"'dx dy dz du
with internal force is described by

41 2 43
£+ a,f —flyar (f42+a—ﬁ~——f42) AF + (£ 4+ o1 dz —
0x oy 0z

44
) arf+ ™M+ Gafu du—-f") ar = dxdy dzdu, (A—9—1)

whoge details are tabulated as follows :
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volume ©On Direction of Action of Stresses
which st-—
ress acts X—directioﬁTy—direction z—direction|u—direction
6 11 12 afIS ’O"f14
dyazau | T * gx ax |£ agy ax | £5% =5 ez % ax
_fll _f12 __flﬂ __f14
6f21 afZZ af23 6f24
N f22+——~—&y ay | 2% e £ S
_ 2! 22 __fzs __fz4
iy 1 - 2 e 3 34
0 0 0 .
du ax dy f31+—’a‘ix'dz S af; az | £ af; a f%“'%ﬁ’dz
_ _ £33 _
41 8fA2 a 43 a 4
dx dy dz £ 5; au | % 35 dqu | % ;é au | 'Y gl du
gt _ 12 _ 3 _ 4
TABLE 4

Normal of drf' is x—axis. while that of dF y-axis. that of
iF z-axis and finally that of dAF time-axis, respectively,
by Which we can understand TABLE 4. (A—9—1) can be deri-
ved by thinking of the last row in TABLE 4.

Secondly we shall consider on equilibrium of hyper moment
around 0, upon infinitesimal surface element of dxdu near
the origin of Xx-u plane as in Fig. 38 which leads us to
Equilibrium of jnternal

Fig. 38

Bending Moment around the
(See the right leaf.)

center of infinitesimal
plane element of dxdu-

4

' dydz du - %—+ (14 + dx) dydzdu - dTX——f“ dxdydz x
1
—dzi— (1 + 6;:1 du) axdyaz - —@2‘—1—:0. (A—9—2)
Neglecting higher order of infinitesimal terms we oObtain
=g, (A—9-3)
The remaining five planes give
PP=p2, =", *?=f" ana =%, (A—9—4)

fSIZ:E,I3
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=) 4 =
B 5 2 K #Hh o £ R F M
ER&® [ x 5 m y 5 @ z 5 M u A A
a 11 a 3
syazan | T¥ ;{dx:f+?%cm fm-g;dx:f+i;cm
1 — 2 _ 13 U
o o o2 o
o | P | |
- —£2* ~ 23 — %
31 3 ~32 3 4
quaxay |+ dgx dz | £% daf; dz f3+ﬁ—xf3—dz % afu dz
—f31 .__faz _féS ___I34
1 e 2 3 4
dx dy dz f+6f T S f+df f+giﬁu
—£*! — 42 | 2 — £t

AF OB xE, AF ORIy, AF OBBI s BT, BHK aF' ok
NREHBTH2F2E25L, FIREXBDSCERT L >HEIERE T, Ee4 ko
BEOFICHNTEL I OB
RIC, x —uFHOKRAELLT: H3 sRom<, BEHO, MNFEHdIxAY
OHRLOOCRANOBEI X PO THHEND,

#E38X
uA I“-i——éu———du
T
£ .Ol g
0 -—‘-—?) A’X

#@=xv A b OFE)

(A—9—1)
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14 d 14 dfld
% dydzdu - o +(f"+ e
x dx) xdydzdu -%—-—f“ X
ot
dx dy dz - T
\' ;f T X
du)dxdydz-—gizzo,
(A—9-2)
o o R
..6__—dx %ﬁi_fo Ekoﬁd\ai‘:%%lt(’
x f#1 =l (A—9—3)
BET,
BOOSEOYHE g Ty
_f23: f32 f.')l_fIS , f12: f21
fAZ:thl , fA3 f34

(A—9—4)
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which finally leads to

=9, (A=9—5)
(A-9—1) can be rearranged in
a =1 . (A—9—6)
The remaining three directicnig give
o f=¢", 0 f*=f", and a, £ =1 .
We namely obtain eQquilibrium equation of hyper stresses of,
o f* =+ (A—9—17)

(contracted over k) . )
If no volumetric force is presenrt, (A—9-—7) reduces to

o, f*=o0, (A—9—8)
for which we can take potentials of ¢’ such that
£5=9,09,¢",
Pl =— (P + PP+ ™),
(gr=¢7, (A—9—9)

s0 that (A—9—8) may identically be satisfied.
We also know the other conservation Eqn. of energy momentum
tensor of,

0, P =0, (A—9—10)
which can be satisfied by taking potentials of,
T* =0, 6.9,
T =— (Y™ 02y™ 1 92y | (A=9—11)
1f o' ¢’ (X) =0, (A-9—12)
we obtain ') =0, (A—9—13)

where we have taken tire boundary conditions of,
Limf00 =1im1 00 = Lim 00 = im0 = 0,
for time-dependent wolutions, while those of,
1im 00 = 1im ' '™ = Lm0 = 0,
for static field, by which we have annhilated degrees of

freedom that arbitrary functions are trailed when integra-
ting (A—9—8) and (A—9—10).
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(A—-10) Kageyama Model

Kageyama Model which is
educational one of rotating
electric field on spherical
condensere ie displayed oOn

the following Fig. (So6 the right)

Fig. 64

Clock—-wise rotation appears

only when
R=10M&L.

Otherwise it enjoys upwards
counter clock—wise rotaticn.
Thie twinkling rotation is that of a morning-glory oOr any
vine.

It continues to enjoy counter clock-wise rotation 1f one
decreases variable resister and vics versa.

Namely, 1f the initial condition is clock—wise oOne 1t leals
g0 and vice versa, Twinkling rotation, of course, becomes
rapid when one increasee electric potential across delta Ne-
onse. Thise model is called Kageyama One since the inventor
ie Akira KAGEYAMA.

(A-11) Reversing Reflection upon Mirror

Image upon mirror reverses iteself later-
ally, while 1t enjoye ordinary orientation
longitudinally., It seems guite natural to
enjoy longitudinal inversion if laterally (See the right)
80. Fig. 65
Why ? < Above > and < Below > are present
because g—field is so. For instance, mirror

of EARTH also reverses itself, namely,

— 338 —



(A-10)

3HHERY, KAl
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REEOES OHEY K
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Db,

RIC 10 M2 O ffi% &
SHBIOR, L
BT REH G RO [a]EE 2
Rbhs, ORODH
Ok, REEHRO

g2 1L = H

(A) BERCYES

4L HX 3

DC 100V

EH (R X3

(FE64K)

Méné A b, EF~ATT 28 % & ->ARC, FHOOLOEHORETHS (10

M2 AL A ) .

AZEENEEH LT E, JBEGL LTHRIAAOREL O HERETUL, <
ORESAEGEL, FALEETHL, @ * X R0 BT T L5 &,
MEEF I RKadAb, BILRKEK-TERINALZOT, BILEFVERLTW S,

(A-11) & o &= & #

FEICHD BE, EAVRELTWS, —T5,

FFRARELT WA N
5, EF3 95T
b,

s EEVREL TnLH L

>TETEIRDBOTH

OBHE, WTH55H09 £, FHEHO
HEHNEEZ LT L, £TT, ENHEE
2B E— BT HEROMB IR T
£, THRACBENATELT, EBTOLTE,
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(A) Mathematics and Physics
when we treat a whole g-field—we think giant mirror of
"EARTH.

This conception also holds when we think of microscopic

for instance, that of electron.

g—field

(A-12) Multiplication Theorem
and Frequency Modulation

Multiplication Theorem may appear corresponding with
addition theorem in trigcnometory. In recourse to generali-

zed theorem of De moivre’s we have

(cosf+isinB)=cosaf+ismag, (A—12-1)
the right hand side of which leads to
= CeosA) (1titanp)”. (A—12-2)
If
af =0,

takeg all the real value, there is no restriction to @, beca-

use of which we put

0<:&<€q . (A—12—-3)
Then,
| itanp | <1, (A-12-4)
holde. With reference to extended bincmial theorem we obtain,
: . ala—1
(1+i tanﬂ)d:1+aztanﬂ—-—%——)tanzﬂ
—1 —2 )
‘a(asg)(a ) Citan® §)+ -
ala—1)-(a—n+l
L a(a )nfa n+l) Citanf)"+ oo
a(a—1 ala—1Xa—2Xa—3
:1—_(2_!_)-tan2ﬂ+ Z(' )( ) tan“ﬂ .....
. -1 a—2
5 a(a~1§a;2ﬂa—3)tm5ﬂ“‘“”:] (A—12—5)
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Then, the left hand side is easily found to be,

= Com )" sin® s )"

—1 —2 = a-4
i a(a )4((1. Wa—3) Sm4ﬂ(00513) — nocag
by [asinﬂ(cosﬂ)d_l_ d(d_sl)'(a_z) Smsﬂ(mﬂ)a‘3+...]'

Weo finally obtain,
a —1 a-2

cosaf = (cos f) —(Jl(.pf’[—!)sinzﬂcosﬁ’)

- —2 — a4
+ d(a 1)(4(Z| )(a 3) Sin.;ﬂ(c(sﬂ) Y

a-1 —1 —2
sinaf=asinf (cosf) AL 3)!(d ) sin® 4

X ( CI)S,B)d_3+ ..... , (A*lzhﬁ)

comparing real part and imaginary of the left hand side with
those of the right hand side, respectively, which is multipl-
ication theorem.
Thie theorem is applied to frequency modulation expression
of,
V=¥,sin(Lsinwt ) ¢

=¥,sin(sin wt ) 2t (A—12—-17)
If we put,
« = gin wt, g=09t, (A—12—-8)
(A—12—7) leads us to,
nwt—1
sin ( 9sinw?) t = (sinwt) sin @7 (cos @)%

i i — i -2 sine ¢ —3

ksmwt(smc;t!l)(smwt )sina.Qt(cos.Qt)
+ e ]. (A-12-9)
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Physical Constants associated with the present title

Physical Constants associated with the
present title

Signal Velocity c=29979%x10"° on sec.
Newtonian Gravitation Constant
k=6.670x10" dm- c’/g?,

Unit Year Y =2365.242 days

Mass of the Moon m=0.0123 A.U.

Mass of the Earth M=1.00A.U. =5AN7X1&7gr
Mass of the Sun M’ =332, 958A.U. =1.991x10° gr

Distance between the Earth and the Sun
[ =1.00A.U, =1.49600% 10° Kn
Light Year [’ =09.46%x10" Kn
Mass of our Galaxy M =2x10" M/
Rotation Velocity of our Galaxy at the Sotlar
System . v=250 KmSec,
Mass Density of the Universe (near the Solar System)
0=1.0x%x10" gr/m®
Stress Energy of Gravitation upon the Surface

2

of the Earth W — sik::_54xldlgnkf
Horizontal Component of Geomagnetic Field
(at Hamamateu ) H=30942 7
g-Acceleration Helsinki 981.9152 om ged |

Roma 980.3617 ~

Johanesburg 978. 5495 ~

Shohwa, Base 982.5401 ~
Resistivity of Cupper P=172%10° Q- em (T=293°K)
Density of Cupper P=8 93 gr/em’

Density of Barium Strontium Titanate
P=¢6.05 gr/m®
( Unit cell is (4A°)%, )

Density of Ferroxcube 2 0= 4. 4 gr/on®
Coupling Constant of Electron
A=——2 == 9 41 %10°/ganss - seC
2me
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Physical Constants associated with the present title

(Coupling constant of Frenker-Kramers Fquation is twice this
econstant to most of materials. )

Unit Charge —e=-4.803%x10""esu
Mass of Electron m=29.1083% 10 gr
Mass of Proton M=1836m=100759ami=16729x%10 > gr
Mass of Neutron M’ =1839m=1. 00895 amu
Cilassicai Radius of Eiectron
i 922 =2.818X10"" cm

mc R

Bohr Radius 8, =——=5292%10" om

Wave Length of Visible Ray ©°

A=(3~7)%x10"
Period of Electron in Hydrogen Atom
21’

4
me

=1.520% 10 % sec,

Period of Other Planets

Mercury 0.2409 year
( Barth 1. 0000 year)
Mars 1. 8809 year
Saturn 29. 350 year
Pluto 250. 431 year
(The Tenth Planet == 775. 0O)
Uranus 84. 598 year

(The first 21 years are nights of Winter in Northern
Hemisphere, while days of Summer in Southern.

The following 21 years are periodically days and nights.

The third 21 years are days of Summer in Northern
Hemisphere, while nights of Winter in Southern.
The last 21 years are also periodically days and nights.)
Planck’s Constant

h _
A=——=1.054%x10"% ergs - sec.
27

Boltzmannean Constant k=1.380%x10"° ergs/degree
Unit Electron Volt 1eV=1.602%x10"% erg
1 coulomb=2.9979% 10" esu

— 346 —



Physical Constants associated with the present title
Time Reversing Machine (Past Observing Machine) and
Geologic Scales

Beginning of Quaternary Period of Cenozoic

Era T =— 10° years

Tertiary Period of Cenozoic Era t:=—-63X106was
Cretacious Period of Mesozoic Era T=— 135%10" years
Jurassic Period of Mesozoic Era T==—181%10" years
Triassic Period of Mesozoic Era t==—-230><106ymus
Permian Period of Paleogoic Era t::—-ZSOXIOGyuus
Carboniferous Period of Paleogoic Era t=— 345X 10° years
Devonian Period of Paleogoic Era T=—405%10" years
Silurian Pericd of Paleogoic Era T=— 425x10° years
Ordovician Period of Paleogzoic FEra t==—-500X106was
Cambrian Period of Paleogoic Era T=— €00x 10° years

(Dreams of Earth vanish far atv :=—-600X106yaus- Yet time

reversing machine owns the possibility in which further rast
will be searched for, )
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